

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+ Power Analyzer

用户手册

有限保证和责任限制

在正常使用和维护条件下,Fluke 公司保证每一个产品都没有材料缺陷和制造工艺问题。保证期为从产品发货之日起二(2)年。部件、产品修理和服务的保证期限为 90 天。本项保证仅向授权零售商的原始买方或最终用户提供,并且不适用于保险丝和一次性电池或者任何被 Fluke 公司认定由于误用、改变、疏忽、意外非正常操作和使用所造成的产品损坏。Fluke 公司保证软件能够在完全符合性能指标的条件下至少操作 90 天,而且软件是正确地记录在无缺陷的媒体上。Fluke 公司并不保证软件没有错误或无操作中断。

Fluke 公司仅授权零售商为最终客户提供新产品或未使用过产品的保证。但并未授权他们代表 Fluke 公司提供范 围更广或内容不同的保证。只有通过 Fluke 授权 的销售商购买的产品,或者买方已经按适当的国际价格付款的产 品,才能享受 Fluke 的保证支持。在一个国家购买的产品被送往另一个国家维修时,Fluke 公 司保留向买方收取 修理/更换零部件的进口费用的权利。

Fluke 公司的保证责任是有限的, Fluke 公司可以选择是否将依购买价退款、免费维修或更换在保证期内退回 到 Fluke 公司委托服务中心的有缺陷产品。

要求保修服务时,请与就近的 Fluke 授权服务中心联系,获得退还授权信息;然后将产品连同问题描述寄至该服务中心,并预付邮资和保险费用(目的地离岸价格)。Fluke 对运送途中发生的损坏不承担责任。在保修之后,产品将被寄回给买方并提前支付运输费(目的地交货)。如果 Fluke 认定产品故障是由于疏忽、误用、污染、修改、意外或不当操作或处理状况而产生,包括未在产品规定的额定值下使用引起的过压故障;或是由于机件日常使用损耗,则 Fluke 会估算修理费用,在获得买方同意后再进行修理。在修理之后,产品将被寄回给买方并预付运输费;买方将收到修理和返程运输费用(寄发地交货)的帐单。

本保证为买方唯一能获得的全部赔偿内容,并且取代所有其它明示或隐含的保证,包括但不限于适销性或适用于 特殊目的的任何隐含保证。FLUKE 对任何特殊、间接、偶发或后续的损坏或损失概不负责,包括由于任何原因或 推理引起的数据丢失。

由于某些国家或州不允许对隐含保证的期限加以限制、或者排除和限制意外或后续损坏本保证的限制和排除责任 条款可能并不对每一个买方都适用。如果本保证的某些条款被法院或其它具有适当管辖权的裁决机构判定为无效 或不可执行,则此类判决将不影响任何其它条款的有效性或可执行性。

11/99

Fluke Corporation P.O. Box 9090 Everett, WA 98206-9090 U.S.A. 福禄克中国服务中心 北京市海淀区花园路4号 通恒大厦1楼101室 邮编:100088

目录

标题	页码
概述	
产品概览	
联系福禄克	
安全须知	3
警告及小心	
符号	
准备工作	5
标准包装	5
使用支架和手带	7
连接电源	
电池充电	9
产品	10
型号对照表	
操作特性	
控制面板	
显示屏	
接口面板	
操作	
全局配置	
设置量程	
设置接线方式	
设置同步源和更新率	
清零	
定义计算公式	
数值	
预览视图	
用户自定义视图	
积分	
谐波	

更改视图模式	40
选择要显示的谐波	40
线性坐标和对数坐标	
相量	
选择要显示的相量数据	
选择电路型式	
缩放相量	47
波形	49
选择要显示的波形	51
设置触发	52
使用光标进行测量	
缩放和移动波形	55
指从1-10-50 K/V	56
选择要显示的趋势	58
删除挡势采集项,	59
设置测量周期	60
缩放和移动趋势图	61
新报管理	62
保存教据	62
进行记录	62
存储器数据管理	63
双机互联	65
双机互联的连接	65
双机互联进行测量	66
连接计算机	67
系统设置	
常规设置	
语言设置	
设置时间和日期	

日志存储设置	. 70
设置通信参数	70
远程	71
本机检测	71
校准	. 72

维护	-	73
	清洁	73
	更换电池	73
	更换保险丝 	75
	因件升级 	76
	四日 / / 次	0

附件和选件	
技术指标	80
通用技术指标	
电气技术指标	
电压	
准确度	
电流	
电机(NORMA 6003+、NORMA 6004+)	
频域测量	
附录	84
测量值计算方法	
如何更准确的测量	
通道内阻引起的测量误差	
泄露电容的效应	
宽频带测量	

概述

产品概览

Fluke NORMA 6003/NORMA 6003+/NORMA 6004/NORMA 6004+ Power Analyzers (以下统称为"产品"或"分析仪")为便携式高带宽精密功率分析仪。产品可配合 Fluke 电流钳 80i-2010s 和 Fluke 高压 差分探头 U1500s 使用,可用于包括电子开关(变频式)在内的各种电气负载。

产品具有以下特性:

- 单机多达4路电压和4路电流通道。
- 电机转速和扭矩测量(NORMA 6003+、NORMA 6004+)。
- 0.1%准确度、500 kHz 带宽、200 kHz 采样率。
- 各通道之间离符合 CAT III 1000V/CAT IV 600V 基本隔离。
- 灵活的配置可满足各种测量要求,可将2台分析仪同步,配置为6至8路通道。
- 9.6 cm 厚度,非常适合狭窄空间使用。
- 5000 mAh 锂离子电池,一次充电可支持连续工作 10 小时。
- CAT III 1000 V、CAT IV 600 V 安全等级
- 100 ms 至 1 s 可配置更新率, 32 GB 存储空间支持连续记录。
- 主要功能:数值、波形、谐波、相量、趋势。
- USB 和 RS485 接口,采用开放式通信协议,支持用户自定义系统集成和软件。
- 用户界面简洁易用,拥有更好的用户体验,适合现场应用。
- PC 软件(Fluke Power Analyzer 软件),支持在线测量、数据下载和分析。

联系福禄克

可通过以下电话号码联系福禄克: 福禄克中国客户服务中心热线: 400-810-3435 福禄克中国维修服务中心热线: 400-921-0835

- 美国技术支持: 1-800-44-FLUKE (1-800-443-5853)
- 美国校准/维修: 1-888-99-FLUKE (1-888-993-5853)
- 加拿大: 1-800-36-FLUKE (1-800-363-5853)
- 欧洲: +31 402-675-200
- 日本: +81-3-6714-3114
- 新加坡:: +65-6799-5566
- 中国: +86-400-810-3435 (服务) 或 +86-400-921-0835 (维修)
- 巴西: +55-11-3530-8901
- 世界任何地区: +1-425-446-5500

如需注册产品、查看、打印或下载最新版的手册或手册补遗,请访问 <u>cn.fluke.com</u> (中文)或 <u>www.fluke.com</u> (英文)。

安全须知

警告及小心

警告表示会对用户造成危险的状况和操作。小心表示可能对产品或受测设备造成损坏的状况和操作。

▲▲ 警告

为防止可能出现触电、火灾或人身伤害,并确保安全操作本产品:

- 使用产品之前,请先阅读所有安全须知。
- 请务必严格按照规定使用产品,否则可能减弱产品的防护能力。
- 遵守地方和国家安全规程。穿戴个人防护用品(经认可的橡胶手套、面罩和阻燃 服),以防危险带电导体外露时遭受电击和电弧而受伤。
- 使用产品前先检查外壳。检查是否存在裂纹或塑胶件缺损。请仔细检查端子附近的绝缘体。
- 请勿在爆炸性气体、蒸汽周围或潮湿环境中使用本产品。
- 进行所有测量时,请使用产品批准的测量等级(CAT)、电压和电流额定值的附件 (探头、测试导线和适配器)。
- 请勿使用已损坏的测试线。检查测试线的绝缘层是否破损,并测量已知的电压。
- 若产品损坏,请勿使用。
- 若产品工作异常,请勿使用。
- 操作本产品前请确保电池盖关闭且锁定。
- 打开电池盖之前,首先断开所有探头、测试线和附件。
- 切勿单独工作。
- 仅使用随产品提供的外部电源。
- 请勿超出产品、探头或附件中额定值最低的单个元件的测量类别(CAT)额定值。
- 交流电压真有效值高于 30 V、交流电压峰值高于 42 V 或直流电压高于 60 V 时, 请勿触摸。
- 两个端子之间或每个端子与接地点之间施加的电压不能超过额定值。
- 请先测量已知电压,以确定产品工作正常。
- 若产品损坏,请将其禁用。

符号

表 1 所列为本产品或本文档中使用的符号。

表	1.	符号

符号	说明
⚠	警告。危险。
A	警告。危险电压。电击危险。
	请参阅用户文档。
ф	保险丝
~	AC (交流电)
	DC (直流电)
	双重绝缘
CE	符合欧盟指令。
Li-ion	锂离子电池
4	允许用于未绝缘的危险带电导体。
Ŧ	接地
	通过 CSA Group 认证,符合北美安全标准。
W	符合韩国相关 EMC 标准。
Ò	符合澳大利亚相关安全和 EMC 标准。
САТШ	Ⅲ 类测量适用于测试和测量与建筑物低电压电源装置配电部分连接的电路。
CAT II	Ⅳ 类测量适用于测试和测量与建筑物低电压电源装置电源部分连接的电路。
Li-ion	本产品含有锂离子电池。切勿与固态废弃物一同丢弃。废弃电池应由具资质的回收机构或危险 材料处理机构按照当地有关规定予以处理。请联系授权的 Fluke 服务中心,了解回收信息。
X	本产品符合 WEEE 指令的标识要求。粘贴的标签指示不得将电气/电子产品作为家庭垃圾丢 弃。产品类别:参照 WEEE 指令附录 I 中的设备类型,本产品被划为第 9 类"监控仪器"产 品。请勿将本产品作为未分类的城市废弃物处理。

准备工作

标准包装

为了防止在装运过程中损坏,该产品采用特别设计的包装箱装运。请仔细检查产品是否有损坏,并将任何损坏情况告知承运人。

图 1 和表 2 所示为产品的标配设备。各个部件的具体信息以及更多附件,请参见附件和选件部分。

在产品开箱时,请检查表 2 中所列的标准设备,并检查装箱单上所列的其它已订购部件。如发现有任何部件短缺,请告知购买地或最近的 Fluke 技术服务中心。

如果需要重新运送产品,请使用原始的包装箱。如果原始包装箱不可用,可根据产品型号及序列号向 Fluke 订购一个新包装箱。

图 1. 标准设备

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+ 用户手册

表 2. 标准设备

		数量	
项目编号	说明 	NORMA 6004/6004+	NORMA 6003/6003+
0	主机,已安装电池 BP291: 3894688	1	1
2	电源适配器(18V DC,CAT IV 600V 适配器)	1	1
3	电源线 (中国版): 4894155 电源线 (国际版) Fluke 料号: 4894137 电源转接头套件 (国际版) Fluke 料号: 4894143	1	1
4	测试线组 四通道型号: 1.5 m 测试线,(4)红、(4)黑、(8)蓝 鳄鱼夹,(4)红、(4)黑、(8)蓝 三通道型号: 1.5 m 测试线,(3)红、(3)黑、(6)蓝 鳄鱼夹,(3)红、(3)黑、(6)蓝	1	1
5	USB (mini B)电缆	1	1
6	RS-485/同步适配器(3.81mm,黑色,3 引脚)	1	1
7	转速/扭矩适配器(3.81mm,黑色,6 引脚)	无/1	无/1
8	闪存盘(内含 PC 端软件及用户手册)	1	1
9	软包	1	1
	快速入门手册	1	1
土村山	产品质保卡(仅限中国)	1	1
本 你 出	校准报告	1	1
	QC 合格证(仅限中国)	1	1

使用支架和手带

产品采用便携式设计,配备有倾斜支架,可将产品放置在平整的表面上,方便用户以一定的角度观察屏幕,如 图 2 所示。

Ϋ́Ē

请留意支架上的标识 🛞 ,倾斜支架不得用于携带仪器。

图 2. 使用倾斜支架

此外,产品左侧提供了安装手带的位置,可将随产品提供的手带安装到产品上,手带长度可进行调节。 如 **图** 3 所示。

图 3. 安装手带

手带既方便工作时单手握持产品,又方便不使用时携带仪器。

连接电源

请参照图 4,将分析仪连接到标准交流电源并开机:

- 1. 将电源线的连接器一端连接到电源适配器/充电器,并将插头插入到标准墙壁插座。
- 2. 将电源适配器/充电器的插头插入到分析仪上的电源插孔(需打开保护盖)。
- 3. 轻按分析仪前面板上的开机/关机按钮,将分析仪打开。

图 4. 连接电源

当分析仪首次开机时,会自动打开用于设置界面语言、日期及时间等选项的菜单界面。

▲▲ 警告

为避免电击,请使用工厂提供的电源线连接到标准电源插座。

电池充电

要使电池达到充足电量,必须先对本设备进行充电。

由电池供电时,屏幕上方的电池符号指示电池的状况。**□** 符号表示电量不足,请立即充电。 要给电池充电并向仪器供电,按 **图**5所示连接电源适配器。关闭分析仪可提高电池充电速度。

图 5. 电池充电

▲小心

为避免充电时电池过热,请勿在极热或极冷环境下进行充电。如果在极端温度下进行充电,电池容量可能会降低。请参见充电温度指标。

注

为了最大程度延长电池寿命,请每隔3个月对产品至少充电2小时。不使用时,电池会 自放电,满量电池大约6个月完全放完电。电池经过长时间存放后,将需要2至10个 充电循环才能完全充满电。

产品

本部分介绍产品操作面板的各个部分及显示屏的位置和功能。请在操作产品之前,仔细阅读本部分内容。产品前面板的操作说明请参见*控制面板*部分;远程操作说明请参见*连接计算机*部分。

本手册内容适用于多款型号。由于不同的型号具有不同的特性,所以本手册中的部分信息可能不适用于 您的产品。

型号对照表

表 3 所列为不同型号产品的功能对比。

特性	NORMA 6003	NORMA 6003+	NORMA 6004	NORMA 6004+
电压/电流通道数	3/3	3/3	4/4	4/4
电机转速/扭矩测量	-	有	-	有
基本准确度		0.1	%	
带宽	500kHz (高电压/电流量程)			
采样率		200 kHz		
通道间隔离		有	3	
数值(V/I/P/ŋ等)		有	3	
波形	有			
趋势	有			
谐波	有			
相量	有			
过电压等级	CAT III 1000V,CAT IV 600V			
防水防尘等级	IP50			
彩色屏	5.7",背光照明,4:3			
锂电池	10.8 V/5000 mAh,54 Wh			
关机状态下的充电指示	充电中:电源指示灯橙色;满电:电源指示灯绿色			
充电器	充电/供电			
PC 软件	有			
USB (设备) - Mini B	有			
485/同步接口		有(可达 92	1,600 bps)	
低电量指示		有	Ī	

表 3. 产品特性表

操作特性

此章节介绍分析仪的控制面板。操作前请仔细阅读本节内容。

控制面板

控制面板包括电源开关、显示屏、功能键、导航按钮、显示模式按钮、背光照明以及存储器和系统设置按钮。如所示。

图 6 和 表 4 所示为控制面板上各个组件的特性和功能。

图 6. 控制面板

|--|

项目	说明
	开机/关机按钮
0	该按钮也作为交流电源连接指示。产品处于关机状态时,如果该按钮点亮,则表示已接通
	交流电源。电池充电时,该按钮显示橙色;电池充满后,该按钮显示绿色。
	- 短按按钮,可将产品开机或关机。
	- 按卜按钮开保持约 15 秒, 可将分析仪强制天机。
2	
	5.7" TFT LCD 显示屏, 640×480 像素。请参见 <i>显示屏</i> 部分。
	$\begin{bmatrix} F1 \\ F2 \\ F3 \end{bmatrix} F4 \begin{bmatrix} F5 \\ F5 \end{bmatrix}$
3	·
	F1 至 F5 蓝色功能键依次对应屏幕右方自上至下的 5 个软键,故相应的功能键与软键是
	等效的。在工作期间,软键的显示标签因操作的功能和界面的不同而变化。
	ВАСК
	返回键
	退出当前屏幕,返回上一级屏幕或上一级菜单。
	SELECT
	选择键
4	当屏幕上的某项功能被选中(黄色高亮显示)时,按下选择键将选中该项功能或进入该项功
	月已。
	万问键(上、卜、左、石箭头键) 可去屋草上低在可以选择的功能之间移动。光觉选择的功能以差在宣言目二
	可任毋奋工则有可以见律的功能之间移动,目前远律的功能以更巴向党亚尔。

项目	说明
6	背光照明
U	- 短按:调节背光的亮度,可以实现多档可调节。
	- 保持按下 2 秒: 可截取当前屏幕显示图像,并保存为 png 格式的图片。
	MEMORY
7	存储器操作
	管理内部存储器中储存的数据。详细信息请参见存储器数据管理部分。
	SYSTEM
8	系统设置按钮
	仪器信息、仪器设置、通信设置。详细信息请参见 <i>系统设置</i> 部分。

显示屏

显示为如 图 7 所示。

:态栏———	leter			2019/07/	05 12:47:28	Œ	
	U1 1000V(Auto)	U2 10V(Auto)	U3 10V(Auto)	U4 10V(Auto)	更新率 1000ms		
	11 0.1A(Auto)	12 0.1A(Auto)	13 0.1A(Auto)	I4 0.1A(Auto)		配置	
	3P4W3M src U1	1P2W1M src U4			自定义		
							<i>th</i>
显示区——							一状1
	U1rms	215.141 V	11rms	0.000	021 A	预览	
	U2rms	0.014 V	W1+	0.000) Wh	يەل بىلىر بىلىر	
						目定义	
	W1+	0.000 Wh	a2+	0.000) Ah	测重坝	
		0.000 111	92.	0.000			
	14/1	0.000 Wh				1357	
	WI	-0.000 Wh				く祝知	

图 7. 显示屏

状态栏

表 5. 状态栏

1 Trend>缩放	2 3 4 5 2 2019/06/23 21:15:38 ∫ ← <
项目	说明
1	菜单导航 显示当前屏幕所处的菜单路径,例如: 设置 > 接线方式 。
2	时钟 显示分析仪当前的日期和时间。
3	J 积分标识 正在进行积分,状态栏上显示积分标识。详细信息请参见积分部分。
4	← 或 RS485表示通信处于连接状态。
5	 电池状态 显示电池电量状态。 - ▲: 电池符号显示充电标识,表示产品已接通主电源。 - ▲: 主电源未接通,标识中的竖条表示电池电量。

主显示区

主显示区是显示屏的主要显示区域,用于显示各种设置选项、当前测量数据、图表以及列表清单等。 主显示区依当前显示模式及位置不同而显示不同内容,具体信息将在下文的相关章节中详细介绍。

软键

在显示屏的右侧,有5个软键,其显示标签因操作的功能和界面的不同而变化。软键分别对应屏幕右侧的 F1 至 F5 蓝色功能键。

在工作期间,5个软键并不一定都有标签显示,当某个软键的标签为空白时,表示该键在当前无任何功能。

除主屏外,项主要测试功能下的菜单第一项,即 **通** 键的标签均为"**配置**",其作用为全局配置。所以在下文的菜单介绍中,不再赘述 **通** (配置)键的作用。

接口面板

	CLE INT VOL AGE H H CUER ENT VOLTAGE H H CUER ENT VOLTAGE H CUER ENT VOLTAGE CUER ENT VOLTAGE H CUER ENT VOLTAGE H CUER
项目	说明
0 1	电压/电流输入通道编号
2	电流端口保护盖 保护盖将可前后滑动。保护盖滑动到前方时,即露出外部电流传感器输入端口;保护盖 滑动到后方时,即露出电流输入端口。
3 VoltaGE	电压输入端口
4	电流输入端口
5 O 10V MAX EXT SENSOR	外部电流传感器输入端口

表 6. 连接器面板

项目		说明		
		电机转速/扭矩信号输入端口		
			引脚	信号
			1	扭矩模拟量输入,10V量程
			2	扭矩输入公共端
GND A 10V A GND GND SPEED		3	转速模拟量输入,10 V 量程;或转速脉冲输入,A 脉 冲	
			4	转速脉冲输入, B 脉冲
			5	转速脉冲输入,Z脉冲
			6	转速输入公共端

操作

全局配置

在分析仪提供的全部 5 种视图模式(数值、波形、趋势图、相量和谐波)中, **1** 按钮对应的软键均为 "**配置**"。该功能下的设置为全局配置,将被应用到其他全部模式。

通过"**配置**"菜单,可设置分析仪的各通道量程、时序同步、接线方式、公式、清零操作以及公式编辑。 本节详细解释"**配置**"菜单的功能和操作方法,在随后的各部分将直接使用,不再赘述。

进入配置菜单:

• 任意视图模式主屏幕 —> [1] (配置)键。

配置菜单中的各项功能如表 7所示。

表 7. 全局配置

项目	说明
量程	▲ 在量程菜单中,可设置各个通道的电压/电流量程、比例、滤波器,以及是否使用外部传感器等。NORMA 6003+和 NORMA 6004+,还可以设置电机扭矩转速测量的模式,比例等。
接线	F2
时序同步	▶ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
清零	F4 通过清零功能消除分析仪的输入偏移。详细信息请参见 <i>清零</i> 部分。
公式	F5 定义效率公式以及部分数值量计算的公式。详细信息请参见 <i>定义计算公式</i> 部分。

设置量程

1. 任意视图模式主屏幕 **□ □ □ □ (配置) > □ □ □ □ (量程) > □ □ □ □** (CH1)。

2. 通道1的设置界面如表 8.所示。

项目	说明
电压量程	 电压量程选项: 自动: 自动量程。分析仪自动选择具有最佳分辨率的电压测量量程。 10 V 100 V 100 V 1000 V
电压比例	外部电压传感器的变比(PT)。正确设置外部电压传感器的变比后,分析仪将根据电 压变比和测量值自动计算被测信号的实际电压值。 电压比例表示外接传感器的电压变比。 例如,连接 U1500s 高压探头,其电压变比为 4mV/V,表示 4:1000 的电压比例。在分析 仪上的电压比例应该设置为 0.004。
电压线路滤波器	 电压信号滤波器选项: 关:不使用线路滤波器。 650 Hz:自动打开线路滤波器截止频率为 650 Hz。通常用于观察变频系统的合成频率信号。 10 kHz:自动打开线路滤波器,截止频率为 10kHz。通常用于抗混叠。 插入电压测量回路,对电压和功率的测量产生直接影响。当打开线路滤波器时,测量值不包含高频成分。可以去除来自变频器或畸变波形的噪声。

表 8. 设置量程

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+ मते = मा

用户手册

项目	说明	
电流量程	 电流量程选项: 分流器: 自动、0.1A、1A、10A (当"外部传感器"未被选中时) 外部传感器(BNC): 自动、0.1V、1V、10V (当选中"外部传感器"时) 	
外部传感器	选择是否使用外部传感器。 当选择/取消选择使用外部选传感器时,需要重新设置电流量程设置。 不选择外部传感器时,电流信号直接接入 10A 的电流通道,通过内部的 shunt 测量电流; 如选择外部传感器,电流信号是外部传感器输出接入 BNC 接口测量电流。	
电流比例	外部电流传感器的变比(CT)。正确设置外部电流传感器的变比后,分析仪将根据电流变比和测量值自动计算被测信号的实际电流值。 有两种比例设置: A/A 和 mV/A。 如果选用内部分流器,电流比例表示实际输入电流(A)与分流器上输入电流(A)之 比(也就是 A/A)。 如果选用外部分流器(BNC),电流比例表示 BNC 端口上输入电压(V)与所连接的 传感器上的实际电流(A)之比(表示为 mV/A)。 例如,连接电流传感器探头,其输出灵敏度为 1mV/A,表示 1:1000 的比例。在 分析仪上的电流比例应该设置为 0.001。	
电流线路滤波器	 电流信号滤波器选项: 关:不使用电流滤波器。 650 Hz:自动打开线路滤波器,截止频率为650Hz。通常用于观察变频系统的合成频率信号。 10 kHz:自动打开线路滤波器,截止频率为10kHz。通常用于抗混叠。 插入电流测量回路,对电流和功率的测量产生直接影响。当打开线路滤波器时,测量值不包含高频成分。可以去除来自变频器或畸变波形的噪声。 	

- 3. 设置界面中已默认选中"电压量程"。
- 4. 按控制面板上的 SELECT (选择)按钮, 然后利用上、下导航箭头(☞ △)键选中相应的选项。然后再次 按 SELECT (选择)按钮,确认选项。
- 5. 利用控制面板上的上、下导航箭头(♥ ▲)键,将光标移动到"电压比例"选项。然后按 SELECT (选择) 按钮。

6. 输入键盘显示在屏幕上。

利用控制面板上的导航箭头(Ψ Δ] 【)键,将光标移动到键盘上对应的字符上,然后按 SELECT (选择) 按钮,将该值输入到顶部的输入框中。依此继续,直到完成全部字符的输入。

注

对于键盘上的字符:

 $k = \times 10^3$; $m = \times 10^{-3}$; $\mu = \times 10^{-6}$; $M = \times 10^6$.

<-- 为退格键,即删除光标之前的一个字符。

- 7. 利用控制面板上的上、下导航箭头(◄ ▲)键,选中键盘上的"Ok"(确定)按钮,然后按控制面板上的 SELECT (选择)按钮,确认输入的值。 如果要放弃所做的修改,请选中键盘上的"Exit"(退出)按钮,然后按 SELECT (选择)按钮;或者直接 按控制面板上的 EACK (返回)按钮。
- 8. 利用控制面板上的上、下导航箭头(☞ ▲)键,将光标移动到"电压线路滤波器"选项,然后按控制面 板上的 SELEGT (选择)按钮。
- 9. 利用上、下导航箭头(□ □)键选中相应的选项。然后再次按 SELEOT (选择)按钮,确认选项。
- 10. 利用控制面板上的上、下导航箭头(□ □)键,将光标移动到"电流量程"选项。
- 11. 重复第4步,设置电流量程。
- 12. 利用控制面板上的上、下导航箭头(□ □)键,将光标移动到"外部传感器"选项。
- 13. 此时,每按一次控制面板上的 SELECT (选择)按钮,将切换选择使用(显示标记"×")和不使用(空白) 外部传感器。

注

一般情况下,分流器或探头的铭牌上都标有其参数设置。必要时请查阅外部传感器的相关资料。

▲▲警告

请严格按照外部电压分压器,电流分流器及电流钳的比例设置参数,否则测量值将不反映实际信号,会有触电的危险。

- 14. 利用控制面板上的上、下导航箭头(□ □)键和SELECT (选择)按钮,完成其余项目的设置。
- 15. 按控制面板上的 BACK (返回) 按钮返回上级菜单。
- 16. 按 F2 (CH2)至 F4 (CH4)按钮, 对通道 2 至通道 4.进行设置。
- 17. 连续按控制面板上的 BACK (返回)按钮, 返回主屏幕。

注

10kHz 抗混叠滤波器位于测量通道中。它是正确分析快速傅里叶变换(FFT)数据的必备 条件。该滤波器可用于保证测量带宽远小于½采样率,避免信号混叠。

650Hz 低通滤波由数字滤波器实现,它可以帮助区分变频系统的合成频率信号与载波信号。打开此滤波器,可便于观察变频系统的合成频率。

若测量三相系统,福禄克建议三相组内各通道的线路滤波器设置应保持一致。 滤波器的默认配置为关。

电机转速/扭矩通道设置

- 1. 任意视图模式主屏幕 -> **[1] (配置)** -> **[1] (〕** (**是 是**) -> **[5**] (**电 1**).
- 2. 电机转速和扭矩的配置界面如表 9 所示。

表 9. 电机转速/扭矩通道配置	表 9.	电机转速/扭矩通道配置
------------------	------	-------------

项目	说明
转速	
	转速信号模式选项:
模式	 - 10 ∨ (默认):适用于模拟电压输出的转速传感器。若传感器为电流,频率, 或其它模拟量输出,需要先转换为电压再输入。
	- A: 适用于单路脉冲的编码器,只计测转速值,不计测旋转方向。
	- AB: 适用于 AB 双路脉冲的编码器,计测转速值和方向。
	- ABZ: 适用于 ABZ 绝对编码器, 计测转速值和方向。
	转速传感器变比。
	当"模式"选项设置为"10 V"时,变比的单位为 V/rpm,表示电机转速每 rpm 对应端口输入电压为多少 V (伏特)。分析仪计算实际转速的公式如下:
比例	转速 = 电压 / 比例
	当" 模式 "设置为其他选项时,变比的单位为每转的脉冲数(PPR)。分析仪计算实际转速的公式如下:
	转速(rpm) = 每分钟脉冲数 / 比例

项目	说明		
扭矩			
模式: 支持 0 至 10 用分流电阻将其转	₩ 扭矩输入,必须将输入信号调理至该限值范围之内。如果传感器为电流输出,则必须利 奂为电压,然后再施加到输入。		
比例	扭矩传感器变比。分析仪计算实际扭矩的公式如下: 扭矩 = 电压 / 比例		

- 3. 配置界面中已默认选中"模式"(下拉菜单为黄色高亮显示)。
- 4. 按控制面板上的 SELECT (选择)按钮,然后利用上、下导航箭头(☞ △)键选中相应的选项。然后再次 按 SELECT (选择)按钮,确认选项。
- 5. 利用控制面板上的上、下导航箭头(□ □)键,将光标移动到"比例"选项。然后按 SELEOT (选择)按钮。
- 6. 在弹出的输入键盘上,利用控制面板上的上、下导航箭头(☞ △)键和 SELECT (选择)按钮,输入正确的 值。
- 7. 利用控制面板上的上、下导航箭头(☑ △)键,选中键盘上的"Ok"按钮,然后按控制面板上的 SELECT (选择)按钮,确认输入的值。
- 8. 对扭矩部分的"比例"选项,重复第5至7步,完成扭矩比例的配置,单位为V/Nm。
- 利用控制面板上的导航箭头(➡▲】【)键,将光标移动到"应用"按钮,然后按控制面板上的 ELEGT (选择)按钮。如果不选中"应用",将不保存对设置的更改。

10. 连续按控制面板上的 BACK (返回)按钮, 返回主屏幕。

设置接线方式

为了测量各种单相或三相电源的功率,需要采用不同的接线方式,并且使用多个通道的组合。 分析仪提供以下基本接线选项:

- 1P2W1M, 即单相 2 线 1 表
- 3P3W2M,即三相3线2表
- 3P4W3M,即三相4线3表
- 3P3W3M,即三相3线3表

注

在接线方式名称简写中,字母"P"表示英文的"Phase",即相;字母"W"表示英文的"Wire"即线;字母"M"表示英文的"Meter",即功率计(含一组电压表和电流表)。

1P2W1M

图 8. 1P2W1M 接线

1P2W1M 接线,一个电压测量通道接于相线与零线之间;一个电流测量通道串联于相线或零线上(注意 方向),或者用电流传感器钳在相线或零线上。

3P4W3M

图 9. 3P4W3M 接线

3P4W3M 接线,三个电压测量通道分别接于每条相线与零线之间;三个电流测量通道分别串联于每条相线上,或者用电流传感器钳在每条相线上。

对于没有零线的系统,三个电压测量通道可接于三条相线与公共地线之间。对于三相五线系统,用一个 3P4W3M的接线组测量相线与零线,可另选一个通道配置成 1P2W1M,测量零线与地线之间的参数(仅 NORMA 6004/6004+)。若地线与零线都不存在,三个通道的公共端连接到一起并悬空即可,所测得的总 功率仍有效。

这种接线方式的特点是:

- 1. 对三相具有完全相同的阻抗特性,可建立一个平衡的测量系统。
- 2. 具有接零或接地端,输入到仪器的共模成分较小,可降低共模成分对测量结果的影响。
- 3. 相电压直接测出,线电压通过△计算得出。更适合测量星形接法的系统。

3P3W3M

图 10. 3P3W3M 接线

3P3W3M 接线,三个电压测量通道分别跨接于每两条相线之间;三个电流测量通道分别串联于每条相线上,或者用电流传感器钳在每条相线上。

这种接线方法的特点是:

- 1. 对三相具有完全相同的阻抗特性,可建立一个平衡的测量系统
- 测量工频输入的变频系统时,这种接法可适当消除变频信号中的工频成分,有利于更准确的捕捉 变频频率。
- 3. 线电压直接测出,相电压通过△计算得出。更适合测量三角形接法的系统。
- 可以通过三个电流通道求和的方法测出零线电流,但无法测出零线电压,当零线电压/零线电流存 在时,测得的总和功率亦不准确。

3P3W2M

图 11. 3P3W2M 接线

3P3W2M 接线,将一条相线(C)作为公共线,两个电压测量通道分别跨接于另外两条相线与这条相线之间;两个电流测量通道分别串联于另外两条相线上,或者用电流传感器钳在另外两条相线上(也称为两表 法或 Aron 法)。

这种接线方法的特点时:

- 1. 只占用两个通道即可测量三相系统,可空余出 1-2 个通道,用以测量 DC,单相 AC 或者三相 AC(同时测两路三相 AC 仅适用于 NORMA 6004/6004+)。
- 测量工频输入的变频系统时,这种接法可适当消除变频信号中的工频成分,有利于更准确的捕捉变频 频率。
- 3. 对三相的测试阻抗有所不同;相电压和部分线电压通过△计算得出;另外,该接线方式无法测出零线 的电压和电流。当零线电压/零线电流存在时,测得的总和功率亦不准确。

优缺点对比:

	3P4W3M	3P3W3M	3P3W2M
占用通道数	3	3	2
具有平衡的测试阻抗	是	是	否
可消除变频系统的工频成分	否	是	是
相电压	直接测量	间接计算	间接计算
线电压	间接计算	直接测量	部分直接测量
输入的共模干扰电压	较低	一般	较高
是否可测量零线电流	是	是	否

注

电流测量的位置可能对测量结果有一定的影响。为减轻这种影响,应考虑电压、电流的测量位置。如果测量较高电压,较小电流,电压通道应接在源(Source)一侧,电流通道 应串联(或将传感器放置在)负载(Load)一侧(同接线图中所示);如果测量较低电压,较大 电流,电压通道应接在负载(Load)一侧,电流通道应串联(或将传感器放置在)源(Source) 一侧。请参考附录"通道内阻引起的测量误差"一节。

接线组

选择特定的接线方式时,需要使用两个或多个通道的组合,此时称这两个或多个通道为一个接线组。 例如,将通道1的接线方式设置为3P3W2M时,通道1和通道2就形成一个接线组。

进入接线方式设置:

1. 任意视图模式主屏幕 —> **[1] [1] (配置)** —> **[2] [2]** (接线)。

2. 接线方式的设置界面如 图 12 所示。

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+ 用户手册

图 12. 接线方式

注

可选的接线方式与分析仪配备的通道数量相关,接线方式界面会有所不同。正确选用接 线方式有利于保证更准确的测量。

接线方式配置界面总体上分为4个部分:

- 通道选择: 右上方部分,显示全部3路/4路通道的接线组配置。利用控制面板上的左、右导航箭头 • () 1)键,可选择不同的接线组,被选中的接线组的名称用红色字体突出显示。
- 接线方式: 右下方部分,显示当前所选通道支持的接线方式选项。利用控制面板上的上、下导航箭 头(▼ △)键,可选择对应通道的接线方式。
- 连接示意图: 左上方部分, 显示"接线方式"部分当前所选接线方式的连接示意图。
- 公式: 左下方部分,显示当前所选"接线方式"的参数计算方法。

设置接线方式:

- 1. 在如*图* 12 所示"接线"界面,利用控制面板上的左、右导航箭头(▷□)键,选中"通道配置"中的某个通道或接线组。被选中通道/接线组的接线方式高亮表示。
- 2. 利用控制面板上的上、下导航箭头(□ □)键,在"接线方式"中选择相应的接线方式。
- 3. 按控制面板上的 SELECT (选择)按钮。
- 4. 重复第1至3步,完成全部通道的配置。
- 5. 按控制面板上的 **BACK** (返回), 返回上级菜单; 连续按该键, 可返回主屏幕。

设置同步源和更新率

同步源是基准输入信号,根据选中的同步源信号频率,决定测量的时间区间,在此区间内的采样值被用 于产生电压、电流和功率等测量值,从而确保用整周期的信号进行计算,避免由于信号截断而产生的测 量误差。

- 1. 任意视图模式主屏幕 -> [1] (配置) -> [3] (时序同步)。
- 2. 时序/同步的设置界面如表 10 所示。

表 10. 时序和同步

项目	说明		
更新率	DSP 计算数据值的时间间隔。 100 ms 200 ms 500 ms 1 s 		
源	各个接线组的同步源。 每个接线组的所有通道只能共用同一个同步源。可供选择的同步源包括该接线组 中所有通道的电压和电流信号。		

注

界面中可供配置的接线组取决于接线方式。详细信息请参见设置接线方式部分。

- 3. 利用控制面板上的上、下导航箭头(□ □)键,将光标移动到"更新率"。
- 按控制面板上的 SELECT (选择)按钮,然后利用上、下导航箭头(◄ ▲)键选中相应的选项。然后再次 按SELECT (选择)按钮,确认选项。
- 5. 利用控制面板上的上、下导航箭头(▼ △)键,将光标移动到"源"中的第一个接线组。

- 6. 按控制面板上的 SELECT (选择)按钮,然后利用上、下导航箭头(☞ △)键选中相应的选项。然后再次 按 SELECT (选择)按钮,确认选项。
- 7. 利用控制面板上的左、右导航箭头(】 ❹)键,逐次选择其余各个接线组,并重复第6步。
- 8. 按控制面板上的 **BACK** (返回), 返回上级菜单; 连续按该键, 可返回主屏幕。

设置同步源

分析仪测量交流信号时,大多数测量值采用整周期采样的方法计算,以降低截断误差。此时需要选取一个通道作为同步源,以确定整周期的长度。

每个接线组可以选取一个同步源,同步源可以选取接线组内任意通道的电压或电流。一般来说,工频系统的电压比电流更稳定。Fluke 建议使用电压作为同步源。变频系统的电压有较大高频成分,而电流高频成分比较少,所以在电流较稳定时,可以选用电流作为同步源;然而,若电流值较小,或者忽大忽小,变化较大,应选用电压作为同步源。

清零

清零实现的功能是将指定通道的当前值清零,用以校准功率分析仪本身以及外置传感器的零位。分析仪 支持对每个模块进行清零。

- 1. 任意视图模式主屏幕 —> **[1] [1] (配置)** —> **[4] (清零)**。
- 利用导航箭头(▼ △ □ □ □)键,将光标移动到希望清零的选项上,然后按控制面板上的 SELEOT (选择)按钮,当前项目的选择框变为黄色底色,显示一个黑色的"×"符号,表示已被选中。如果再按一次 SELEOT (选择)按钮,选择框恢复为空白,表示未被选中。
- 3. 对希望清零的每个通道重复第2步。
- 4. 利用导航箭头(四四】【)键,将光标移动到清零按钮,然后按控制面板上的 SELEOT (选择)按钮。
定义计算公式

分析仪提供了定义效率以及部分数值量计算公式的功能。

定义效率计算公式

分析仪提供效率计算公式编辑功能,可以设定待测系统的输入输出功率来源,并以此计算效率。

- 1. 任意视图模式主屏幕 -> **Δ** (配置) -> **Δ** (公式) -> **Δ** (η)。
- 2. 计算公式定义界面如表 11 所示。
- 3. 利用控制面板上的上、下导航箭头(☞ ☎)键,将光标移动到效率(η)公式的分子,分子部分变为黄色, 然后按控制面板上的 SELECT (选择)按钮。

表 11. 定义计算公式

项目	说明
9	P1 P2 P3 P4 Pm P∑[123] P3 P4
•	本机实测参量。
	键盘的这个部分列出了分析仪当前接线方式下的所有可测量到的功率符号。各个参量的具体含义,请参考附录"测量值计算方法"部分。
	P1* P2* P3* P Σ [123]* Pm*
2	从机实测参量
	- 双机互联模式下,远端从机的实测参量。
	- 单机模式下,该部分为灰色,不可选择。
	各个参量的具体含义,请参考附录"测量值计算方法"部分。

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+

用户手册

- 输入键盘会在屏幕上弹出。
 输入键盘分为三部分:顶部区域均为本机所测参量;中间"Remote"部分为双机互联模式下远端从机的实测参量(单机模式下,该部分为灰色,不可选择);底部为运算符及操作按键。
- 5. 利用导航箭头(▼ ← ♪ 【)键,将光标移动到键盘上对应的字符上,然后按 SELECT (选择)按钮,将该值 输入到顶部的输入框中。
- 6. 重复第5步,在输入框中输入一个符合效率运算规则的表达式。

注

输入过程中,如果当前输入不符合规则,会提示"错误的输入,请选择其他"。此时, 请仔细检查输入是否符合效率运算表达式规则。

- 7. 利用导航箭头(▼ □ □ □ □)键,将光标移动到"Ok"按钮上,然后按 SELECT (选择)按钮。
- 8. 对于效率(η)公式的分母,重复第3至7步。
- 9. 按 SELECT (选择)按钮,逐步返回主屏幕。

定义 hvf/hcf 计算

hvf/hcf 是根据 IEC60034 对旋转电机进行测量时用到的数值测量项,需要根据测试的实际需求,配置电 机的类型和额定电压/额定电流。

- 1. 任意视图模式主屏幕 -> [1] (配置) -> [5] (公式) -> [3] (hvf/hcf)。
- 2. 计算公式定义界面如 图 13 所示。 在 hvf/hcf 计算设置页面中,上半部分为 hvf 的计算设置,下半部分为 hcf 的计算设置。

Meter>配置>公	走 :		2019/07/27 16:20:32	۲
U1 1000V(Auto) I1 10A(Auto) 3P4W3M src U1	U2 1000V(Auto) I2 10A(Auto) 1P2W1M src U4	U3 100 I3 10A(/	hvf hcf $hvf = \frac{1}{U_N} \int_{k=2}^{13} \frac{U_{Hk}^2}{k}$	<η
U1rms	214.0 V		N 电机类型 ● 非三相 ○ 三相,k≠3n	^{khvf} ر
U2rms	0.1 V		<i>0</i> _№ ● 用测量值○ 指定 2.4 V	
W1+			$hcf = \frac{1}{I_N} \int_{k=2}^{13} I_{Hk}^2$	
WI			I _N	
			 ● 用测量值○ 指定 1.0 ▲ ▲ 	

图 13. hvf/hcf 计算公式

- 3. 利用控制面板上的导航箭头(Ψ Δ)键,将光标移动到"电机类型",根据实际情况选中"非三相" 或"三相, k≠3n",然后按控制面板上的 **SELECT** (选择)按钮。
- 4. 利用控制面板上的导航箭头(▼ △ ▷ 집)键,将光标移动到"U_N"(额定电压),根据实际情况选中"用 测量值"或"指定",然后按控制面板上的 SELEGT (选择)按钮。 若选择"测量值",则以实测的电压基波幅度作为额定电压;若选择"指定",可以指定额定电压。 当选中"指定"时,将光标移动到对应输入框。 然后按按控制面板上的 SELECT (选择)按钮,并利用 弹出的输入键盘输入相应的数值,然后将光标移动到键盘上的"OK"键,按控制面板上的 SELECT (选 择)按钮。

- 对于下半部分的 hcf 设置部分,重复第 3 至 4 步。 对于 I_N,若选择"测量值",则以实测的电流基波幅度作为额定电流;若选择"指定",可以指定额 定电流。
- 6. 利用控制面板上的导航箭头(▼ ▲ 〕 【)键,将光标移动到"应用"按钮,然后按控制面板上的 Selection (选择)按钮。如果不选中"应用",将不保存对设置的更改。
- 7. 按控制面板上的 BACK (返回), 返回上级菜单; 连续按该键, 可返回主屏幕。

数值

分析仪开机之后默认进入数值(Meter)模式,主屏幕中以列表形式显示当前的各个测量值。

用户亦可通过控制面板上的 METER (数值)按钮进入数值 (Meter)模式。

表 12 所列为屏幕上显示的各个项目。

项目	说明
_	状态栏
0	详细信息请参见
	状态栏部分的介绍。
	量程配置信息
	各个模块的当前量程信息。
2	- 带(Auto)的表示是自动量程,会根据信号大小自动切换量程范围。
	- 不带(Auto)表示当前处于固定量程,数值显示的量程范围,量程不会随着信号发生变
	化;
•	接线配置信息
3	各个接线组的当前接线方式
•	更新率
4	分析仪的当前更新率。请参见 <i>设置同步源</i> 部分。。
	当前状态
•	- 预览: 当前处于预览试图模式。
5	- 自定义: 当前处于用户自定义视图模式。
	- HOLD: 当前处于数据保持状态。此时显示数值列表区域的数值不跟随实际信号变化。
	数值列表
6	根据用户的设置,以列表的形式显示各个测量项。详细信息请参见预览视图和用户自定义视图部分。

表 12. 数值屏幕

项目	说明
	软键
	□ (配置): 全局配置,请参见
0	▶ [预览) :进入预览视图模式,请参见 <i>预览视图</i> 部分。
	国王 (自定义测量项): 进入用户自定义视图模式,请参见 <i>用户自定义视图</i> 部分。
	□ → (积分) :积分操作,请参见 <i>积分</i> 部分。
	底栏
Ŭ	显示当前的页码或提示用户可执行的操作。

预览视图

在预览视图模式下,屏幕上按一定的顺序显示当前可用的全部测量值。

进入预览视图模式:

● 数值(Meter)主屏幕 —> ▶ 2 → (预览)按钮。

预览视图如表 13 所示,此时的状态标签显示"预览"。

表 1	3.	数值屏幕	- 预览视图	Ę
-----	----	------	--------	---

项目	说明
排序 功能	 Ⅰ 按功能排序 按照功能对测量值列表进行排序。 按下 □ (功能排序)按钮,则按照功能对测量值进行排序,功能排序标签以深 蓝色突出显示。
排序 通道	 ►2 按通道排序 按照通道对测量值列表进行排序。 按下 [2] (通道排序)按钮,则按照通道对测量值进行排序。
显示	 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

项目	说明
	 ▲ 上翻页键 当可供显示的测量值超过每屏中的显示数量时,通过 ▲、▼ 翻页键可向前或向后滚动显示更多的测量值。 当前屏幕的页码显示在底部的提示栏中。如图 20 中的"1/40",表示总共40页,当前屏幕为第1页。
	F5 下翻页键 下翻页键,向后滚动显示下一页。

用户自定义视图

根据不同的接线方式和通道数量,测量值的数量会非常多。即使每屏上显示最多数量的测量值,也可能 会有十几页甚至几十页的屏幕。

分析仪提供了用户自定义数值视图的功能,用户可选择最多 20 个最感兴趣的测量值,显示在一个屏幕 中,从而避免频繁的使用 ▲、 ▼ 翻页键。

进入用户自定义视图:

• 数值(Meter)主屏幕 —> **□ → (自定义测量项)**按钮。

用户自定义视图如表 14.所示,此时的数据来源标签显示"自定义"。

表 1	4.	数值屏幕	—	自定义视图
-----	----	------	---	-------

项目	说明
编辑	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
添加	▶ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
删除	□ 3 删除当前项 删除当前位置的项目。
	F4 前移当前所选项目 将当前所选测量值在列表中前移一个位置。如果当前所选测量值已经排在列表第 一位,按该按钮时则不执行任何操作。

项目	说明
	▶ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

注

首次进入用户自定义列表时,屏幕为空白,即列表中没有任何测量值。用于可向列表中 增加最多 20 个测量值。

分析仪能够记忆用户自定义视图。即使分析仪关机,在下次进入自定义视图后,将自动 显示用户上次自定义的列表。

添加测量项

- 1. 数值(Meter)主屏幕 —> [3] (自定义测量项)按钮 > [2] (添加)按钮。
- 2. 其中分类、按树状菜单结构列出了全部可用的测量项。测量项的详细信息请参见附录测量值计算方法 部分。
- **3**. 利用 **□** 至 **□** 按钮,选择大类。
- 4. 利用导航箭头(□ □ □] ④键将光标移动到相应项目上。

此时,在测量值树状菜单中,大多数情况下会显示两个对话框,左侧的对话框列出测量项名称,右侧的 对话框列出支持的通道或接线组。实心黄色块为光标位置,空心黄色框表示当前对应的树状结构中的分 支。

注

在双机互联模式下,该菜单中会出现"远程"选项。详细信息请参见双机互联部分。

- 5. 按控制面板上的 SELECT (选择)按钮,当前选项将被添加到列表末尾。 若显示左右两个对话框,应先在左侧对话框选择测量项名称,然后在右侧对话框中选择要添加的通道 或接线组,最后按SELECT (选择)按钮确认
- 6. 重复第3至5步,直到所有需要的测量项添加完毕。总共可以添加最多20个测量值。
- 7. 重复按控制面板上的 BACK (返回)按钮,直到返回到数值主屏幕。

删除测量项

- 1. 数值(Meter)主屏幕 —> [3] (自定义测量项)按钮。
- 2. 利用导航箭头(▼ ▲ 】 【)键,将光标移动到希望删除的测量项上。
- 3. 按 ▶ (删除)按钮。
- 4. 重复第2至3步,直到删除全部希望删除的测量项。
- 5. 按控制面板上的 BACK (返回)按钮,返回到数值主屏幕。

编辑当前测量项

- 1. 数值(Meter)主屏幕 —> [3] (自定义测量项)按钮。
- 2. 按 **E** (编辑) 按钮。
- 3. 利用导航箭头(□□□】()键,将光标移动到要编辑的测量项上。
- 4. 按照与添加测量项部分类似的操作,选择测量项。

与*添加测量项*部分不同的是,该操作中添加的测量值将直接代替光标所在位置的测量项,而不是将新添加的测量项增加到列表末尾。

改变测量项的位置

用户可对自定义视图中显示的测量项进行排序:

- 1. 数值(Meter)主屏幕 —> ☑ (自定义测量项)按钮。
- 2. 利用导航箭头(□□□】()键,将光标移动到要移动的测量值上。
- 3. 按 ▲ (▲)或 ▲ (▼)按钮。每按一次 ▲ (▲)或 ▲ (▼)按钮,光标所在位置的项目向前或向后移动一个位置。
- 4. 对每个希望改变位置的测量项,重复第2至3步。
- 5. 按控制面板上的 **BACK** (返回)按钮,返回到数值主屏幕。

积分

分析仪支持对有功功率、电流和机械功率等进行积分,实现电能、电量和机械能的测量。

进入积分设置界面:

• 数值(Meter)主屏幕 —> ►4 (积分)按钮。

积分设置界面如表 15 所示。

表 15. 积分设置

项目	说明
开始	日 开始积分。按下该按钮后将立即开始积分。
停止	F2 停止积分。按下该按钮后将立即停止积分。(未进行积分时,该软键无任何标签。)
重置	F3 清零积分值及已积分时间。

积分

1. 数值(Meter)主屏幕 → [4] (积分)按钮。

按 [1] (开始)按钮。此时屏幕标题栏上会显示一个 🗍 符号,表示正在进行积分。

2. 按控制面板上的 **BACK** (返回)按钮,返回到数值(Meter)主屏幕。

开始积分后,用户在任何时候希望停止积分,可通过 [2] (停止)按钮,随时停止积分。

注

自动量程切换的过程中存在一个建立时间,该时间内的采样值不准确,这会引起积分误差。因此,为了获取准确的积分结果,建议将参与积分的通道设置为手动量程,量程的 大小应覆盖可能发生的瞬时电压和电流。

谐波

谐波(HARMONIC)模式中,用户能够以表格/柱状图/FFT 图的形式对信号进行分析。

进入谐波模式:

• 当前测量主屏幕 —> |HARMONIC| (谐波)

表 16 所列为屏幕上显示的各个项目。

表 16. 谐波屏幕

项目	说明
0	状态栏 详细信息请参见 状态栏部分的介绍。
2	测试项名称 当前所选测试项的名称,取决于"测试项"中的选项。详细信息请参见 <i>选择要显示的谐波</i> 部分。

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+

用户手册

项目	说明
	基频
U	参考信号即同步源的基频,单位为 Hz。
•	总谐波失真
4	当前所选测试项的电压或电流总谐波失真,UTHD或ITHD。单位为%。
A	基波 含量
	当前所选测试项的电压或电流基波含量, Ufc或 Ifc。单位为%。
•	谐波含量
	当前所选测试项的电压或电流基波含量,Uhc或Inc。单位为%。
9	谐波电压/电流因数
•	当前所选测试项的谐波电压或电流因数, hvf 或 hcf。
	表格或图形
8	根据所选显示模式的不同,显示表格、柱状图或 FFT 图形。请分别参见 <i>谐波表格、谐波 柱状图</i> 和 FFT 图形部分。
	软键
	☑
	[2] (测试项):选择屏幕上显示的谐波测试项,请参见选择要显示的谐波部分。
9	☑ 【模式): 谐波显示模式。每次按下该按钮时,循环切换显示谐波表格、柱状图和 FFT 图形。请参见谐波表格、谐波柱状图和 FFT 图形部分。
	■ /坐标):上翻页键或坐标轴设置键。在表格显示模式下作为上翻页键,在柱状 图和 FFT 图形下作为坐标轴设置键。请参见 <i>线性坐标和对数坐标</i> 部分。
	▶ [▶] (▼): 下翻页键,向下滚动显示更多内容。
	底栏
•	显示当前的页面或提示用户可执行的操作。

更改视图模式

• 谐波(HARMONIC)主屏幕 —> 🖾 (模式)按钮。在表格、柱状图和 FFT 图之间循环切换。

选择要显示的谐波

- 1. 谐波(HARMONIC)主屏幕 —> [2] (测试项)按钮。
 - "测试项"菜单中列出了当前可用的全部参数,包括电压、电流。
- 2. 利用导航箭头(☞ ☎ ◘ 집)键将光标移动到相应项目上。
- 3. 按控制面板上的 SELECT (选择)按钮。

谐波表格

表 17 所列为表格显示的各个项目。

表 17. 谐波表格

项目	说明
谐波次数	谐波次数
幅度	谐波幅值,绝对值,单位为V或A。
百分比	谐波百分比,相对于基波。
相位	谐波相位角。相对于基波。
软键	 「1 (配置): 全局配置,请参见<i>全局配置</i>部分。 [2 (测试项): 选择屏幕上显示的谐波,请参见<i>选择要显示的谐波</i>部分。 [3 (模式): 谐波显示模式。每次按下该按钮时,循环切换显示谐波表格、柱状 图和 FFT 图形。请参见<i>谐波表格、谐波柱状图</i>和 FFT 图形部分。 [4 ▲]: 上翻页键。每页表格可显示 10 次谐波,当需要查看更多谐波数据 时,可利用上、下翻页键向上或向下滚动。 [5 ▲] (マ): 下翻页键,向下滚动显示更多内容。

谐波柱状图

谐波柱状图如 图 14 所示,其中横坐标表示谐波次数,纵坐标表示谐波幅值,单位为V或A。

每个屏幕的谐波柱状图可显示 50 个谐波,可通过 **F5** (下一页)按钮向前或向后翻页,显示更多谐波柱状图。

图 14. 谐波 - 柱状图

FFT 图形

谐波 FFT 图形如 图 15 所示,其中横坐标表示频率,纵坐标表示幅值。 用户可利用左、右导航箭头(】 【)键滚动横坐标,查看更多频率范围下的 FFT 曲线。

图 15. 谐波 – FFT 图形

线性坐标和对数坐标

在谐波柱状图和FFT视图中,利用 **E4 (坐标)**按钮,可切换纵坐标为线性坐标(1, m)或对数坐标(1, 0, 0)。

图 16. 谐波 - 对数坐标

相量

相量(Phasor)模式以表格和图形形式显示所选接线组内各相电压、电流的幅值和相位关系。

进入相量模式:

• 当前测量屏幕 —> [PHASOR] (相量)

相量屏幕如<u>图</u> 17 所示,其中分为左右两部分,左侧为相量表格,右侧为相量图形。左侧表格部分所显示的内容,将同步显示在右侧的图形中。

图 17. 相量屏幕

表 18. 相量屏幕

项目	说明
表格区域	
1	电压相量信息 当前所选接线组中各相或各线电压相量信息,包括基波幅值、相对于同步源的相位角。 关于接线组的信息请参见设置接线方式部分。

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+

用户手册

项目	说明
9	电压不平衡度
U	当前所选接线组的三相电压不平衡度。
	电流相量信息
3	当前所选接线组中各相的电流相量信息,包括基波幅值、相对于同步源的相位角。详细信息请参见 <i>选择要显示的相量数据</i> 部分。关于接线组的信息请参见 <i>设置接线方式</i> 部分。
Δ	电流不平衡度
	当前所选接线组的三相电流不平衡度。
6	相位信息
	当前所选接线组中各相的电压、电流之间的相对相位角,单位为度(°)。
6	频率
	当前所选接线组中同步源信号的频率。详细信息请参见设置同步源部分。
相量图区域	
	接线方式
	当前所选接线组的接线方式。当前界面数据显示对应的接线组,可通过 F2 (接线组) 切换接线组。
8	电压相量
	当前所选接线组的电压相量。横轴右方为基准,以同步源信号的相位为 0°。
9	电流相量
	当前所选接线组的电流相量。横轴右方为基准,以同步源信号的相位为 0°。
	电压和电流刻度
•	为便于阅读,相量图形中仅标出了最外侧圆的刻度。
	软键
	〔□■● (配置): 全局配置,请参见 <i>全局配置</i> 部分。
Ð	F2 (接线组):选择一个接线组进行测试,请参见 <i>设置接线方式</i> 部分。
	I ≥ II (Υ-Δ): 切换电路连接型式(Υ/Δ)。 ↓ 表示星型连接, <mark>∧</mark> 表示三角型连接。请参 见 <i>选择电路型式</i> 部分。
	F5 (缩放):缩放相量,请参见 <i>缩放相量</i> 部分。

选择要显示的相量数据

相量屏幕上同时仅显示一个接线组的相量数据。用户可从当前有效接线组中选择一组,将其相量数据显示在相量屏幕上。

进入接线组菜单:

• 相量主屏幕 —> F2 (接线组)按钮。

选择要显示的相量数据

- 在"接线组"界面中,利用控制面板上的左、右导航箭头(▷□)键,选中"通道配置"中的某个通道或 接线组。被选中通道/接线组的接线方式高亮表示。
 移动光标过程中,可观察到"相量"屏幕中显示的数据根据当前选项即时更新。
- 2. 按控制面板上的 BACK (返回), 返回相量主屏幕。

注

当前可选择用于显示的接线组取决于接线方式。详细信息请参见设置接线方式部分。

选择电路型式

- 1. 相量主屏幕 —> **□ → (Y-Δ)**按钮。
- 每按一次 ΞΞΞΞ (Y-Δ)按钮,在星型(Y)连接和三角型(Δ)连接之间切换。标签上显示的为当前选定的 连接型式。

注

Y-Δ选项只在选择三相接线组时有效。选择**Y**时,相量表格显示各相电压,相量图按**Y** 形绘制;选择Δ时,相量表格显示各线电压,相量图按Δ形绘制。

缩放相量

相量屏幕中,分析仪根据当前实测值,自动确定相量图形中各个相量显示的大小。但是,为便于观察, 用户也可手动缩放电压和电流相量图。

进入缩放菜单:

● 相量主屏幕 —> **□5** (缩放)按钮。

其中的各个选项如表 19 所示。

	表	19.	缩放矢量
--	---	-----	------

项目	说明
缩放 U/I	 □□□□ 选择要缩放的相量 每按一次键 □□□□ (选择相量)按钮,则循环切换当前的被选中的相量,即U或I。 当前选定的相量显示在"缩放"软键标签下方, □,即当前选定的相量为电压。
€ Q	F3 F4 放大/缩小相量 每按一次 F3 (放大) 或 F4 (缩小) 按钮,则将当前被选定的相量按照一定的步续进行放大或缩小。 放大或缩小系数的步续为: 1、2、5、10。
自动	 「5 自动缩放 按下该按钮后,进入自动缩放模式,系统将自动确定最适宜的显示比例和刻度。 此时将忽略所有的手动缩放设置。 自动缩放的策略: 其中最大的相量不超过极坐标中最外侧的圆 极坐标中能够清晰显示每个相量的方向点 清晰标注每个相量的名称

缩放相量:

- 1. 相量主屏幕 —> **E** (缩放)按钮。
- 2. 按 🖾 🖿 (缩放)按钮,根据需要使其标签下方显示 🔰 或 📑
- 3. 按 🖾 ()或 🖾 ()按钮,放大或缩小当前所选的相量。
- 4. 如需恢复为默认的自动缩放,按 [5] (自动)按钮。
- 5. 按控制面板上的 BACK (返回)按钮,返回相量主屏幕。

波形

波形(Scope)模式用以查看被测信号的波形,支持的信号包括电压、电流等,最多可同时选择4个信号进行波形显示。

此外,产品提供光标测量功能,可用于对波形进行各种测量或计算,详细信息请参见使用光标部分。

进入波形模式:

• 当前测量屏幕 —> SCOPE (波形)

波形屏幕如 图 18 所示,表 20 所列为屏幕上显示的各个项目。

图 18. 波形主屏幕

表 20. 波形屏幕

项目	说明
_	状态栏
0	详细信息请参见
	状态栏部分的介绍。
	光标差值/光标位置平均值
	- 当激活水平双光标时,显示两个光标之间的差值。
2	- 当激活单竖线光标时,显示光标位置的平均值。
•	- 当激活双竖线光标时,显示两个光标与波形交叉点之间的差值。
	- 如果关闭光标,该区域则不显示任何数值。
	详细信息请参见 <i>使用光标</i> 部分。
	光标值/时间差值
	- 当激活水平双光标时,分别显示两个光标所在位置的值。HIGH(高):上部光标的值; LOW(低):下部光标的值。
3	- 当激活单竖线光标时,显示光标所在位置的最大值和最小值。MAX:最大值; MIN: 最小值。
	- 当激活双竖线光标时,分别显示两个之间的时间差值(t),以及依此计算的频率值(1/t)。
	- 如果关闭光标,该区域则不显示任何数值。
	触发状态
4	显示当前触发状态。详细信息请参见设置触发部分。
	纵轴比例尺
6	显示当前屏幕上各个波形的纵轴比例尺,即每个栅格代表的数值大小。
	左侧为参数符号,右侧为该参数的纵轴比例尺,具体单位取决于对应的波形。
	比例尺的颜色采用对应波形的颜色。
6	光标
	光标模式可选择单竖线、双竖线和双横线。详细信息请参见使用光标进行测量部分。
9	波形
	屏幕上可同时显示最多4条用户可选择的波形。详细信息请参见选择要显示的波形部分。
	触发标识
8	表示触发位置和触发电平。触发标识的形状取决于当前的触发模式。详细信息请参见设置 触发部分。
	地电平
Y	表示地电势。

项目	说明
10	横轴比例尺 横轴(即时间轴)比例尺,即每个栅格代表的时间长度。
	横轴支持手动缩放,详细信息请参见 <i>缩放和移动波形</i> 部分。
0	触发源和触发模式 当前的触发设置,显示当前的触发源、触发模式。详细信息请参见 <i>设置触发</i> 部分。
ſ	 软键 [1] (配置): 全局配置,请参见<i>全局配置</i>部分。 [2] (信号选择): 选择屏幕上显示的波形,请参见<i>选择要显示的波形</i>部分。 [3] (触发): 触发设置,请参见<i>设置触发</i>部分。 [4] (光标测量): 打开/关闭光标以及设置光标模式,请参见<i>使用光标</i>部分。 [5] (缩放/移动): 缩放、移动波形,请参见<i>缩放和移动波形</i>部分。

选择要显示的波形

屏幕上同时可显示最多4条波形,用户可从全部可用的项目中选择1至4项进行显示。

进入信号选择菜单:

● 波形主屏幕 -> **□2** (信号选择)键。

"信号选择"菜单中列出了当前可用的全部参数,包括电压、电流等,具体参数取决于当前的系统配置。 请参见设置接线方式部分。

选择要显示的波形:

- 1. 在"信号选择"菜单中,利用导航箭头(☞ ☎ 집)键将光标移动到相应项目上。
- 按控制面板上的 SELECT (选择)按钮,当前项目的选择框变为黄色底色,显示一个黑色的"×"符号, 表示已被选中。如果再按一次 SELECT (选择)按钮,选择框恢复为空白,表示未被选中。
 当选中某个参数或取消选中某个参数时,将立即反应在波形屏幕中,显示或取消显示该参数的波形。
- 3. 重复第1至2步,可选择最多4个参数。
- 4. 按控制面板上的 BACK (返回)按钮, 返回到波形主屏幕。

注

设置触发

触发表示分析仪应在何时开始在屏幕上显示波形,以使每次刷新显示的波形能够对齐。当满足设定的触发条件时,发生触发,屏幕上显示的波形按该点对齐。

分析仪提供多种触发方式,支持多种触发源和触发模式。

进入触发设置菜单:

• 波形主屏幕 -> **F3** (触发)按钮。

其中的各个选项如表 21 所示。

项目	说明
触发源	 触发源 每按一次键 (触发源),则循环切换当前的触发源。 当前选定的触发源显示在"触发源"标签下方,用与波形同色的色块表示。 可选择的触发源为"信号选择"菜单中已选中的信号,也即屏幕上"纵轴比例尺" 部分显示的信号,请参见选择要显示的波形部分。
触发选项	 ▶
	F4 F5 触发电平 上下箭头键分别将触发电平调高或调低。每按一次按钮,屏幕上的触发标识会发生上/下方向的移动。

表 21. 设置触发

注

如果设置的触发电平不合适,在"自动"模式下,波形显示起点(屏幕左端的信号电平)可能会不稳定,会发生左右跳动;在"普通"模式下,无法显示波形。

设置触发:

- 1. 波形主屏幕--> E2 (触发)按钮。
- 2. 按 **[1] (触发源)**, 直到显示出与触发信号波形颜色相同的色块。
- 3. 按 ▶ (触发选项)。
- 利用控制面板上的上、下导航箭头(◄ △)键,将光标移动到"模式"下拉框,然后按控制面板上的 Selection (选择)按钮。
- 5. 利用控制面板上的上、下导航箭头(▼ 本)键,选择相应的选项,然后按 SELECT (选择)按钮。
- 6. 利用控制面板上的上、下导航箭头(☞ 四)键,将光标移动到"边沿"下拉框,然后按控制面板上的 SELECT (选择)按钮。
- 7. 利用控制面板上的上、下导航箭头(☞ 四)键,选择相应的选项,然后按 SELECT (选择)按钮。
- 8. 按控制面板上的 BACK (返回)按钮。
- 9. 根据需要,利用 [2] (电平上移)和 [5] (电平下移)按钮,调整触发电平。

使用光标进行测量

利用光标,能够对波形进行数字测量。

进入光标设置菜单:

• 波形主屏幕 -> F4 (光标测量)按钮。

其中的各个选项如表 22 所示。

表 22. 设置光标

项目	说明
选择	 选择被测信号 每按一次键 G (选择)按钮,则循环切换当前的被测信号。 当前选定的信号显示在"选择"软键标签下方,用该信号波形对应的颜色表示。 可选择的被测信号为"信号选择"菜单中已选中的信号,也即屏幕上"纵轴比例 尺"部分显示的信号,请参见选择要显示的波形部分。
类型	 ▶ ▶ ▶ ▶ ★ ★

项目	说明
移动	 移动光标 每按一次 [3] (移动光标)按钮,将循环切换当前被选中的光标,被选中的光标在 图示中用黄色表示,显示在"移动"软键标签下方。 选中某个光标后,可利用导航箭头键(☞ ☎) (),将该光标移动到波形上的对应位 置。
 光标测量	►4 打开/关闭光标 通过该按钮可将光标功能打开或关闭。

使用光标

以下以双竖线光标为例介绍光标的使用,单竖线、双横线光标的使用与此类似。

- 1. 波形主屏幕--> [4] (光标测量)按钮。
- 2. 按 [2] (光标测量)按钮,直到该软键标签上显示"ON"。
- 3. 按 🗗 (类型)按钮,直到该软键标签上显示 👖 图标。
- 4. 按 [1] (选择)按钮,选中待被测信号。

在屏幕的左上角显示两个光标与被测信号交叉点的差值,例如"204.7V";屏幕上方中间分别显示两个 光标所在位置的时间差值(426ms)及依此计算得到的频率值(2.347Hz)。

- 6. 利用控制面板上的左、右导航箭头(】【)键,将左光标移动到相应的位置。
- **7**. 按 **■** (**移动**)按钮,直到该软键标签上显示 **●** 图标,表示右光标被选中,此时右光标上显示一 个菱形标记。
- 8. 利用控制面板上的左、右导航箭头(▷ 【)键,将右光标移动到相应的位置。
- 9. 读取屏幕上方的差值、时间差值及频率值。

缩放和移动波形

波形支持横向和纵向缩放以及移动,其中的纵向缩放和移动,可选中独立波形进行操作,各个波形之间 不受相互影响。

进入缩放菜单:

• 波形主屏幕 —> **F5** (缩放/移动)按钮。

其中的各个选项如表 23 所示。

表 23. 缩放波形

项目	说明
选择	 选择信号 每按一次键 (选择信号)按钮,则循环切换当前的被选择信号。 当前选定的信号显示在"选择"软键标签下方,用该信号波形对应的颜色表示。 可选择的被测信号为"选择"菜单中已选中的信号,也即屏幕上"纵轴比例尺" 部分显示的信号,请参见选择要显示的波形部分。
方向	 □ 2 缩放方向 按下该按钮时,循环切换选择缩放方向。支持对波形进行水平缩放和垂直缩放。 当前选定的缩放方向显示在"方向"软键标签下方,用水平或垂直的双向箭头表示。 - ● ● (水平):缩放所有信号波形的时间轴,时间轴单位以1、2、5、10步续放大或缩小。 - ● ● (垂直):垂直缩放当前选择的信号。
<u>କ୍</u>	[3] ■ [4] 放大/缩小波形 每按一次 [3] (放大)或 [4] (缩小)按钮,则在水平或垂直方向上按照一定的步 续对波形进行放大或缩小。(垂直放大或缩小将应用于选定的波形,水平放大或缩 小将应用于当前显示的全部波形。)
自动	自动缩放 按下该按钮后,进入自动缩放模式,系统自动将所有显示的波形缩放到适宜的比例。此时将忽略所有的手动缩放设置。
U A	移动波形 在该菜单界面中,利用控制面板上的上、下导航箭头(☞ 四)键,可将当前选中的 波形在屏幕上下左右移动。

趋势图

趋势图(Trend)模式显示和记录数值测量量的变化趋势。任何数值测量项均可被显示为趋势,屏幕上同时可显示最多4条趋势曲线。

激活趋势图功能时,分析仪将连续记录测量值的数字读数,并将其显示为图形。如同纸质图表记录器一 样,趋势曲线图自右向左滚动。

屏幕底部显示从开始以来的记录时间。

进入趋势图模式:

• 当前测量屏幕 —> TREND (趋势图)

趋势图屏幕如图 19 所示,表 24 所列为屏幕上显示的各个项目。

图 19. 趋势图主屏幕

项目	说明
	状态栏
0	详细信息请参见
	状态栏部分的介绍。
	纵轴比例尺
	显示当前屏幕上各个趋势曲线的纵轴比例尺,即每个栅格代表的数值大小。
2	左侧为采集项符号,右侧为该采集项之趋势曲线的纵轴比例尺,具体单位取决于对应的采 集项。
	比例尺的颜色采用对应趋势曲线的颜色。
	趋势曲线
3	屏幕上可同时显示最多 4 条用户可选择的趋势曲线。详细信息请参见选择要显示的趋势 部分。
	零位
4	表示该趋势曲线的零位。
A	屏幕左侧时间
Ð	当前屏幕趋势图起始时间。
	当前时间
•	当前屏幕趋势图结束时间。
•	采样间隔
•	绘制当前趋势图使用的采样间隔。
	软键
	┗━━━ (配置): 全局配置,请参见 <i>全局配置</i> 部分。
8	F2 (采集项):选择屏幕上显示的趋势采集项,请参见 <i>选择要显示的趋势</i> 部分。
	■■■ (米样间隔) :设置趋势曲线的采集周期。请参见 <i>设置测量周期</i> 部分。
	[55] (缩放/移动):缩放/移动趋势图,请参见
	<i>缩 </i>

表 24. 趋势图屏幕

选择要显示的趋势

屏幕上同时可显示最多4条趋势曲线,用户可从全部可用的项目中选择1至4项进行显示。

进入采集项菜单:

• 趋势图主屏幕 —> F2 (采集项)按钮。

"采集项"菜单如表 25 所示。

表 25. 选择要显示的趋势

项目	说明
显示	全 设置当前显示的趋势曲线。可从最多4个趋势曲线中选择。默认显示全部4条趋势曲线。
添加	F2 添加采集项用于绘制趋势曲线,最多可添加4个采集项。
删除	▶ 删除当前已添加的趋势采集项。

显示/隐藏趋势曲线:

- 1. 趋势图主屏幕 —> [2] (采集项)按钮 > [1] (显示)按钮。
- 2. 在"显示"对话框中,利用上、下导航箭头(□□)按钮,将光标移动到希望显示/隐藏的趋势曲线上。
- 按控制面板上的 SELECT (选择)按钮,当前项目被选中或取消选中,取决于该项目之前的状态。
 当选中某条趋势曲线或取消选中某条趋势曲线时,将立即反应在趋势图屏幕中,显示或隐藏该条趋势曲线。
- 4. 按 BACK (返回)按钮,返回到趋势图主屏幕。

注

"显示"菜单相当于一个能够容纳最多4个趋势采集项的缓冲区,用户可利用 [2] (添加)和 [3] (删除)键,将最常用的4个趋势采集项添加到该缓冲区。然后通过"显示" 菜单选择要显示/隐藏的趋势曲线。这样可避免频繁使用繁琐的 [2] (添加)和 [3] (删除)键切换显示的趋势曲线。 添加趋势采集项:

1. 趋势图主屏幕 > E2 (采集项)按钮 > E2 (添加)按钮。

"添加"菜单所示。其中分类、按树状菜单结构列出了全部可用的趋势采集项,可用的趋势采集项包含数值功能下大多数的测量项。

2. 利用 **E** 至 **E** 按钮,进入大类。

3. 利用导航箭头(▼ ▲)键将光标移动到相应项目上。

此时,在测量值树状菜单中,大多数情况下会显示两个对话框,左侧的对话框列出采集项的名称,右侧 的对话框列出支持的通道或接线组。实心黄色块为光标位置,空心黄色框表示当前对应的树状结构中的 分支。

4. 按控制面板上的 SELECT (选择)按钮,将进入其下级菜单(如有)。

5. 利用导航箭头(▼ ▲)键将光标移动到相应采集项上。

6. 按控制面板上的 SELECT (选择)按钮,添加当前采集项。此时,该采集项将用黄色突出显示。

添加成功后,将直接返回到顶层参数菜单。

7. 重复第3至6步,直到所有需要的采集项均已添加完成(最多4个)。

8. 重复按控制面板上的 **BACK** (返回)按钮,直到返回到趋势图主屏幕。

注

如果"显示"菜单中已经存在4个趋势采集项,无论其是否全部已经显示在趋势图屏 幕,都无法再增加第5个趋势采集项。此时必须删除一个或多个采集项,然后再增加其 他趋势采集项。

删除趋势采集项:

- 1. 趋势图主屏幕 —> E2 (采集项) —> E3 (删除)。
- 2. 在"删除"对话框中,利用上、下导航箭头(▼ △)按钮,将光标移动到希望删除的采集项上。
- 3. 按控制面板上的 SELECT (选择)按钮,当前项目将被从"显示"菜单中删除。
- 4. 直接返回到"采集项"屏幕。

注

删除趋势数据时,即使"显示"菜单中的某条趋势曲线未显示在屏幕上,也可通过"删除"菜单删除其对应的采集项。

设置测量周期

测量周期是指绘制趋势图所使用的时间间隔,提供"更新率"和"采样间隔"两种模式。"更新率"模式下,趋势图的绘制间隔即分析仪配置的更新率,可以实现准确的等间隔采集,适用于分析快速变化的过程;"采样间隔"模式下,趋势图的绘制间隔由趋势功能自行计时,其间隔不及"更新率"模式准确, 但该模式可以记录较长时间的趋势图。

进入测量周期设置菜单:

● 趋势图主屏幕 —> □3 (采样间隔)按钮。

测量周期设置对话框如表 26 所示。

项目	说明
更新率	按更新率 默认设置下,测量周期与分析仪的更新率相同。 更新率属于分析仪的全局配置,关于更新率的信息,请参见 <i>设置同步源</i> 部分。
采样间隔	 自定义采样间隔 用户可以自定义采样间隔作为测量周期。采样间隔的最小值为1秒,最大值为24小时。 H:自定义采样间隔的小时值。 M:自定义采样间隔的分钟值。 S:自定义采样间隔的秒数值。

表 26. 设置测量周期

自定义采样间隔:

- 1. 趋势图主屏幕 —> [3] (采样间隔)按钮。
- 如果当前选项为"更新率",利用控制面板上的上、下导航箭头键(◄ △)将光标移动到"采样间隔"。 然后按控制面板上的 SELECT (选择)按钮。此时,"采样间隔"选项应被选中。
- 3. 利用控制面板上的上、下导航箭头键(□ 四)将光标移动到 H (小时)输入框。
- 4. 利用控制面板上的左、右导航箭头(▶ 【)键,调整小时值。
- 5. 然后按控制面板上的 SELECT (选择)按钮。
- 6. 重复第3至5步,分别调整分钟值和秒数值。
- 7. 按控制面板上的 BACK (返回)按钮,返回到趋势图主屏幕。

缩放和移动趋势图

趋势图支持纵向和横向移动以及纵向缩放。纵向移动和缩放时,各个趋势图独立进行操作,各个趋势图 之间不受相互影响。

进入缩放菜单:

• 趋势图主屏幕 —> **F5** (缩放/移动)按钮。

其中的各个选项如表 27 所示。

表 27. 缩放趋势图

项目	说明
选择	 选择趋势图 每按一次键 G (选择趋势图)按钮,则循环切换当前的被选定趋势图。 当前选定的趋势图显示在"选择"软键标签下方,用该趋势曲线对应的颜色表示。 可选择的趋势图为"采集项"菜单中已选中的采集项,也即屏幕上"纵轴比例尺" 部分显示的采集项,请参见选择要显示的趋势部分。
<u>କ୍</u> ତ୍	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
恢复	F5 恢复自动缩放 按下该按钮后,将恢复到系统自动确定的显示比例和刻度。
v o) (移动波形 在该菜单界面中,利用控制面板上的导航箭头键(☑ ☎ ◘ ◘ ◘ 0,可将当前选中的趋势 图在屏幕上进行上、下移动,左右移动操作将应用到所显示的全部趋势图。

数据管理

分析仪能够将测量数据以及分析仪当前的配置保存在内部存储器中,也可以长时间记录 Meter 模式下当前屏幕显示的数据。通过 Fluke Power Analyzer 软件,可将这些数据下载到 PC。更多信息可参阅 PC 软件的使用说明。

通过前面板上的 MEMORY 按键,可对内部存储器储存的数据进行管理。

保存数据

在任意测量屏幕中,短按控制面板上的 SAVE (保存)按键,屏幕上弹出"保存"对话框。

此时按 **(数据)**按钮,将当前时刻所有有效的测量值保存到内部存储器。保存成功后,屏幕上会显示包含文件名称的提示信息。

按 **[2]** (设置)按钮,将保存当前系统设置和所有测量功能的配置。同样,保存成功后,屏幕上会显示 包含文件名称的提示信息。

注

文件名由系统根据保存的类别及系统时间自动确定。保存后,用户可以按 MEMORY 键,根据提示修改文件名。(参考存储器数据管理部分)

进行记录

在"Meter"模式下,按下并保持 SAVE (保存)按键 2 秒以上,屏幕上显示记录菜单。此时用户可按 (开始记录)按钮,手动启动记录。

此时,分析仪将记录"Meter"模式下当前显示在当前屏幕上的测量值。

记录过程中,用户无法切换屏幕以及执行其他测量功能。如果用户尝试执行其他操作,屏幕上将显示提示信息:"请先停止记录!"。

如需停止记录,在记录界面中按 **E2** (停止记录)按钮,此时屏幕上将提示创建文件成功,包括记录文件的名称。

注

记录功能仅适用于 Meter 模式。在其他模式下,长按 SAVE (保存)按键时,仪器将显示提示消息,提醒用户该功能仅在 Meter 模式下有效。

注

即使在 Meter 模式下,如果用户利用 HOLD (保持)按键冻结屏幕显示,也将不支持记录功能。此时必须首先退出保持模式,然后才可以使用记录功能。

存储器数据管理

按控制面板上的 MEMORY (存储器)按键,进入"存储管理"操作界面。菜单中的各相功能如表 28 所示。

项目	说明
数据	▲ 查看和管理保存的数据文件。
记录项目	►2 查看和管理记录的项目。
截屏文件	▲ 查看和管理保存的截屏文件。
设置	

表 28. 存储器数据管理

在该操作界面下,用户可对内部存储器中储存的数据文件、记录项目文件、截屏文件、设置文件进行管理,包括删除、删除全部、重命名。请参考 图 20 和表 29。进入具体类别文件菜单后,可执行的操作完全相同,图 20 和表 29 中以"数据"文件为例,对其他类型的文件,不再赘述。

Memory>数据	2019/07/27 20:08:10	∫ ⊡
数据 FData 20190727 153824.txt	日期: 2019/07/27 16:38:25	删除
FData_20190727_165900.txt	文件大小: 31kB	删除全部
		〈重命名
		翻页
		顧页

图 20. 存储文件操作

表	29.	存储文件操	作
---	-----	-------	---

项目	说明
删除	国 删除当前被选中的文件。
删除全部	F2 删除当前类型的全部文件。
重命名	▶ ■ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
	 ▲ 上翻页键 当可供显示的文件数量超过每屏中的显示数量时,通过 ▲、▼ 翻页键可向前或向后滚动显示更多的文件。
	下翻页键 下翻页键,向后滚动显示下一页。

注

执行"删除"和"删除全部"操作时,分析仪将直接删除被选中的文件或删除当前类别 的全部文件,不会进行任何提示;且通过这些操作删除的文件无法通过本地恢复,请谨 慎操作。

双机互联

分析仪支持双机互联模式,即两台分析仪以主/从方式同步工作,实现6路至8路通道配置。

图 21. 双机互联

双机互联的连接

分析仪右侧提供有一个 RS-485 通信端口,该端口为 3 引脚的接线插座,通过随分析仪提供的 RS-485/同步适配器,将两台仪器的 RS-485 通信端口以点对点的方式连接在一起。如 图 21 所示。

这两台分析仪中,一台作为主机工作,另一台作为从机工作。

注

主机只能添加从机中已添加的自定义测量项。关于自定义测量项的更多信息,请参见用户自定义视图部分。

双机互联进行测量

通过 RS-485 端口将两台分析仪连接好之后,按照以下步骤进行测量:

- 1. 设置从机的 RS-485 通讯参数。
 - a) 在从机上的任意工作模式主屏幕 ─> \$Y\$TEM (系统)按钮 > F2 (通讯)按钮,然后按照 <u>设置</u> 通信参数部分的说明,选择 RS-485 连接方式。
 - b) 按控制面板上的 BACK (返回)按钮, 直到返回到测量主屏幕。
- 2. 对于主机,重复第1步的操作。
- 3. 在主机上,按 SYSTEM (系统)按钮,然后按 E3 → (远程)按钮,进入"远程"菜单 此时,主机屏幕上会提示正在搜索远端设备,主机会自动扫描连接的设备。
- 主机搜索到作为从机的分析仪后,会在"可连接的远端设备"列表中显示所连接设备,例如"设备 地址 2"。
- 5. 在主机上,按 **[1] (连接)**按钮,进入"远程"菜单。如果连接成功,软键 **[2]** 的标签将变为"断 开"。
- 按主机控制面板上的 ■ACK (返回)按钮,直到返回系统主屏幕。然后按照用户自定义视图部分的说明,进入添加测量项界面。
 此时会发现"添加"测量项分类中增加了第5项 F5 (远程)。
- 在主机上,按 [5] (远程)按钮。
 此时,主机屏幕上将列出从机上已选择的全部自定义测量项。
- 8. 在主机上,利用控制面板上的导航箭头(☞ ▲ 】 【)键将光标移动到相应测量项上,然后按控制面板上的 SILCOT (选择)按钮。
 此时,对应的测量项将被显示在主机上的自定义测量项列表中(测量项名称中带有后缀 "*")。

注

如果主机上的"远程"界面中未列出想要的测量项,请退出双机互联模式,然后在从机 上增加测量项。详细信息请参见用户自定义视图部分。

注

双机互联期间,从机将被锁定为远端操作,控制面板上的按键将被锁定(**回**)(本地)按 钮除外),无法执行其他操作。

 如需退出双机互联工作模式: 在主机上,按 SYSTEM (系统) → F3 (远程) → F2 (断开)按钮。 或
 在从机上,按 F2 (本地)按钮。
连接计算机

Fluke Power Analyzer 软件是分析仪产品和 PC 间通过 RS-485 或 mini-USB 接口进行通讯的软件。使用 该软件,能简单且迅速地通过 PC 控制和汇总数据。

图 22. 连接计算机

利用 Fluke Power Analyze 软件,能够:

- PC 画面显示分析仪的测量数值、波形、相量、谐波和趋势。可从电压、电流、功率、谐波等所有 测量值中自由选择。
- 仪器设置: 可在 PC 软件中更改所连接的分析仪的设置。
- 可将分析仪内存中的文件下载至 PC 并解析。保存一定时间记录测量数据至 CSV 文件中,且支持截 屏文件下载。
- 对应的操作系统: Windows10/ Windows8/ Windows7 (32bit/64bit)。

关于通过 PC 软件使用分析仪的详细信息,请参阅 PC 软件的使用说明。

系统设置

系统设置功能提供了分析仪系统级的设置选项,包括分析仪的常规设置、通信参数设置、本地/远端控制, 以及分析仪本身的检测。

进入系统设置功能:

• 任意工作模式主屏幕 —> SYSTEM (系统)按钮。

"系统"屏幕的工作区列出的全部为参考信息,不可更改,这些信息对于故障诊断及维修可能会非常有用。

注

在联系 Fluke 请求进行技术支持时,请准备好这些信息。

表 30. 系统信息

项目	说明	
描述	产品名称,例如 Power Analyzer。	
型号	产品的型号,例如 Norma 6004+	
序列号	产品的唯一序列号,在联系 Fluke 客户服务时可能会要求提供该序列号。	
校准日期	产品上次校准的日期。关于校准信息请参见校准部分。	
固件版本	产品内部固件的版本号。	
DSP 版本	产品内部数字信号处理(DSP)器件的版本号。	
FPGA 版本	产品内部 FPGA 的版本号	
创建时间	产品固件的生成时间。	
软键	国 (设置) :设置分析仪的常规选项,请参见 <i>常规设置</i> 部分。	
	[2] (通讯):设置分析仪的串口通信参数,请参见 <i>设置通信参数</i> 部分。	
	□3 □● (远程) :连接远端分析仪,请参见 <i>远程</i> 部分。	
	☑	

常规设置

"设置"屏幕包含一些常规的仪器设置,例如界面语言、时间和日期、日期格式、日志存储设置,也包括固件升级和恢复出厂设置等功能。

进入"设置"屏幕:

- 任意工作模式主屏幕 —> SYSTEM (系统)按钮 > [1] (设置)按钮。
- "设置"屏幕中的选项有:
- 语言
- 时间和日期
- 日期格式
- 固件升级
- 出厂设置
- 日志存储设置

关于固件升级的操作,请参见固件升级部分。

语言设置

可选择本机所支持的语言。

更改界面语言:

- 1. 在"**设置**"屏幕中,利用控制面板上的上、下导航箭头(◄ △)键将光标移动到"语言"选项(下拉菜单 为黄色高亮显示)。
- 按控制面板上的 SELECT (选择)按钮,然后利用上、下导航箭头(◄ ▲)键选中相应的选项。然后再次 按 SELECT (选择)按钮,确认选项。
- 3. 按控制面板上的 BACK (返回)按钮,直到返回"系统"主屏幕。

设置时间和日期

- 在"设置"屏幕中,利用控制面板上的上、下导航箭头(□ □)键将光标移动到"时间和日期"选项(下 拉菜单为黄色高亮显示)。
- 在"时间和日期"对话框中,利用控制面板上的左、右导航箭头(□□)键,依次选择年、月、日、时、 分,利用上、下导航箭头(□□)键调整数值。
- 3. 按控制面板上的 BACK (返回)按钮, 直到返回"系统"主屏幕。

日志存储设置

用户可选择存储器满时分析仪的操作方式,可以设置为系统停止记录,由用户手动清除产品内保存的日 志文件,也可以设置为由系统自动覆盖旧文件。

- 在"配置"屏幕中,利用控制面板上的上、下导航箭头(◄ ヘ)键将光标移动到"日志存储设置"选项 (下拉菜单为黄色高亮显示)。
- 按控制面板上的 SELECT (选择)按钮,然后利用上、下导航箭头(◄ △)键选中相应的选项。然后再次 按 SELECT (选择)按钮,确认选项。
- 3. 按控制面板上的 BACK (返回)按钮, 直到返回"系统"主屏幕。

设置通信参数

分析仪支持 USB 虚拟串口和 RS-485 通信。在双机互联模式下通过 RS-485 通信实现主/从机通信,详 细信息请参见*双机互联*部分。

为保证正常通信,需要对产品的通信端口进行正确的设置。

进入"通讯"设置界面:

• 任意工作模式主屏幕 —> SYSTEM (系统)按钮 > F2 (通讯)按钮。

"通讯"设置屏幕所示, USB 虚拟串口和 RS-485 端口可设置的项目如表 31 所示。但选择不同的通信协议时,部分选项可能不适用,将变为灰色状态。

项目	选项
连接	USB 虚拟串口 RS-485
奇偶性	 O: 奇校验 E: 偶校验 N: 无校验

表 31. 通讯参数

项目	选项
	9600
	19200
	38400
	57600
波特率	115200
	230400
	460800
	576000
	921600
	CR
结束符	LF
	CRLF
数据位	7位
	8位
停止位	1位
	1.5 位
	2位
设备地址	1至9

注

为保证主/从分析仪正确通信,需要在两台分析仪上进行正确配置,请参考"双机互联" 部分。

远程

分析仪提供双机互联功能。通过该菜单,能够将两台分析仪配置为主/从模式,实现6路至8路通道配置。 详细使用方法请参见*双机互联*部分。

本机检测

分析仪提供了自我诊断功能,便于用户自行检查产品的按键和显示屏。

进入诊断:

• 任意工作模式主屏幕 —> SYSTEM (系统)按钮 > E4 (检测)按钮。

表 32. 诊断

项目	说明
LCD 测试	
	按 🔽 键,屏幕上交替显示全屏纯色的蓝、黑、白、红、绿色。
	按 BACK (返回)按钮返回检测菜单。
按键测试	F2
	测试各个按键是否有效。屏幕上会显示控制面板上的全部按键。此时,控制面板 上的所有按键的原本功能将失效。
	每次按下控制面板上的某个物理按键后,屏幕上对应的按钮将从白色变为黄色。
	此时, BACK (返回)按钮将不会返回上级菜单。只有检测过控制面板上的全部物理 按键后, 屏幕将自动返回到"检测"菜单。

校准

分析仪提供校准程序。关于产品校准的详细信息,请参考产品的《校准手册》。

维护

产品内部无用户可维修或维护的部件,也无需特别的维护,只需定期或必要时更换电池,以及在必要时更换保险丝。

清洁

请用湿布或淡肥皂水清洁产品外壳。切勿使用研磨剂、异丙醇或溶剂清洁产品外壳。

▲▲ 警告

清洁分析仪之前,请务必从电源插孔拔出电源适配器/充电器,断开所有测试线的连接。

更换电池

电池在仪器内部进行充电,如果希望使用新电池来延长工作时间或者电池无法再在额定寿命内保持电量时,请更换电池。如果长时间不使用仪器,应每隔3个月充电一次。

如需订购备用电池,请参阅联系福禄克部分和附件和选件部分。

▲▲ 警告

为防止电击,打开电池盖之前,首先断开所有探头、测试线和附件。 请务必使用 Fluke 指定电池进行更换。

请参照 图 23 所示。

NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+ 用户手册

图 23. 更换电池

更换电池:

- 1. 关闭产品,从电源插孔拔出电源适配器/充电器,断开所有测试线的连接。
- 2. 将产品的操作面板朝下,放在平坦桌面上,然后将支架抬起或将其从产品上卸下。
- 用平口螺丝刀将电池仓盖上的两个卡扣螺栓旋转 180 度,使仓盖上的箭头指向解锁标记,然后取下 电池仓盖。
- 4. 利用电池一端上的拉绳,先将电池的一侧提起,然后将电池完全取下。
- 5. 安装新电池,并按与以上相反的顺序重新安装并固定好电池仓盖和支架。

▲ 小心

请勿将产品和/或电池进行焚烧处理。

更换保险丝

请参照图 24 所示。

图 24. 更换保险丝

▲ 小心

为防止损坏仪器,仅可以使用 Fluke 指定规格的保险丝。请参见*联系福禄克*和 *附件和选件*部分。

更换保险丝:

- 1. 关闭产品,从电源插孔拔出电源适配器/充电器,断开所有测试线的连接。
- 2. 将产品的操作面板朝下,放在平坦桌面上,并将倾斜支架折叠到机身上或将其从产品上卸下。
- 3. 用十字螺丝刀将保险丝仓盖上的两个螺钉拆下,然后取下保险丝仓盖。
- 4. 用扁平螺丝刀插入到保险丝支架右侧的缝隙中,轻轻撬动,直到能够用手扣住保险丝,将其拿出。
- 5. 安装新保险丝,并按与以上相反的顺序重新安装并固定好保险丝仓盖和支架。
- 6. 连接电源之前仔细检查电路,确保电流不会再次烧断保险丝。

固件升级

产品的固件升级非常方便,只需通过储存有新固件的 USB 存储器即可完成固件升级。

请从福禄克网站 <u>www.fluke.com</u>下载最新固件,并将文件解压并复制到 USB 存储器。更多详细信息,请参考随固件提供的文档。

请参照图 25 所示。

图 25. 固件升级

- 1. 按照更换电池部分的说明,将电池仓盖打开。
- 2. 在电池舱的右上方,有一个 USB 端口。将包含新固件的 USB 存储器插入到该 USB 端口。
- 3. 升级过程中,请确保电池接触良好供电正常, USB 连接可靠。
- 4. 等仪器完成开机之后,按控制面板上的 SYSTEM (系统)按钮 —> [1] (设置)按钮。
- 5. 利用控制面板上的上、下导航箭头(◄ ▲)键将光标移动到"**固件升级**"选项(下拉菜单为黄色高亮显示)。
- 6. 按控制面板上的 SELECT (选择)按钮。

如果未插入 USB 存储器,产品会提示:"请检查 U 盘"。此时,请按照以上步骤插入 USB 存储器。或者检查 USB 存储器连接是否牢固。 7. 开始升级,升级需要几分钟,请耐心等待,升级成功后分析仪会自动重启。

注

为确保升级成功,固件升级时必须安装电池,且电池电量至少为50%,必须连接电源适 配器。

请从福禄克网站查找并下载最新的固件: www.fluke.com。

附件和选件

表	33.	附件和选件
~~~	•••	

说明	Fluke 产品号
电源适配器(CAT III 1000V/CAT IV 600V)	4829014
电源线 (中国版)	4894155
电源线 (国际版)	4894137
电源转接头套件 (国际版)	4894143
USB (mini B) 磁环线	5126257
RS-485/同步适配器(3.81mm,黑色,3引脚)	5094687
转速/扭矩适配器(3.81mm,黑色,6引脚)	5094693
USB 闪存盘(内含 PC 端软件及用户手册)	4739818
软包	5101220
快速入门手册 (中文)	5101235
快速入门手册 (英文)	5130608
Fluke-NORMA6000 套件(8018): 测试线组,(1)红、(1)黑、(2)蓝,CAT III 1000V/CAT IV 600V	5098516
Fluke-NORMA6000 套件(8019): 鳄鱼夹组,(1)红、(1)黑、(2)蓝,CAT III 1000V/CAT IV 600V	5098525
测试线组,NORMA 6004/6004+ <b>套件</b> 。 1.5 m 测试线,(4)红、(4)黑、(8)蓝 鳄鱼夹,(4)红、(4)黑、(8)蓝	5098494
测试线组, NORMA 6003/6003+ <b>套件</b> 。 1.5 m 测试线, (3)红、(3)黑、(6)蓝 鳄鱼夹, (3)红、(3)黑、(6)蓝	5098502
电池(BP291)	3894688
保险丝,11A	803293

# 技术指标

# 通用技术指标

尺寸(长 x 宽 x 深) ·············· 298 mm x 215 mm x 96 mm
重量
屏幕 ·······640x480 像素
任意端子和地之间的最大电压 ···· 1000 V
温度
工作温度
储存温度 ················
工作湿度······· 无凝结(<10 °C) ≤90 % RH (10 °C 至 30 °C) ≤75 % RH (30 °C 至 40 °C) ≤45 % RH (40 °C 至 50 °C)

#### 海拔

工作海拔	 2000 m	
储存海拔	 12 000 m	
防护等级	 IEC 60529:	IP50 (端子已连接)

#### 电池

类型 ················· 锂离子电池, BP 291, 10.8V/5000 mAh, 54 Wh IEC 62133, UN 38.3

电池使用时间 …………… 10 小时(典型值)

#### 安全性

通用 ······ IEC 61010-1: 污染等级 2 级

测量 ………………………… IEC 61010-2-030: CAT IV 600/CAT III 1000 V

## 电磁兼容性(EMC)

国际······· IEC 61326-1:工业电磁环境; IEC 61326-2-2, CISPR 11: 第1组,A类

第1组:设备内部产生和/或使用与传导相关的无线电频率能量,该能量对于设备自身的内部 功能必不可少。 A 类: 设备适用于非家庭使用以及未直接连接到为住宅建筑物供电的低电压网络的任意设备 中。由于传导干扰和辐射干扰,在其他环境中可能难以保证电磁兼容性。

小心:本设备不适用于住宅环境,可能不能为此类环境中的无线电接收提供足够的保护。

此设备连接至测试对象后,产生的辐射可能会超过 CISPR 11 规定的水平。

韩国(KCC) …………… A 类设备(工业广播和通信设备)

A 类:本产品满足工业(A 类)电磁波设备相关要求,卖方或用户应予以注意。本设备设计用于 商业环境,禁止家庭使用。

# 电气技术指标

#### 模块

NORMA 6003 ······ 3 路电压	+3路电流
NORMA6003+3 路电压	+3路电流 +1路电机
NORMA 60044 路电压	+4路电流
NORMA 6004+4 路电压	+4路电流 +1路电机
采样率	
数据更新率	200 ms、500 ms、1 s

### 电压

量程 ·······V · 10 V、100 V、1000 V
波峰因数 CF ≤ 2
过载能力·······10 %过载
输入阻抗 ·······························2 M Ω / 10 pF (典型值)
温度系数
带宽
100 V 量程:200 kHz
10 V 量程:100 kHz

### 准确度

准确度(%读数 +%量程)

<b>-</b>	直流	交流	
里在		10 Hz 至 1 kHz	10 kHz
1000 V	0.1 + 0.1	0.1 + 0.1	5 + 0.5
100 V	0.1 + 0.1	0.1 + 0.1	5 + 0.5
10 V	0.1+0.2	0.1 + 0.2	5 + 0.5

# 电流

### 分流器

量程	0.1 A、1 A、10 A
波峰因数	····· CF ≤ 2
过载能力	
输入阻抗	
温度系数	
带宽	······ 10 A 量程:500 kHz 1A 量程:200 kHz 0.1A 量程:100 kHz

### BNC

量程	0.1 V、1 V、10 V
波峰因数	CF ≤ 2
过载能力	10 %过载
输入阻抗	100 kΩ / 100 pF
温度系数	0.05 x (标称精度)/K
带宽	10 V 量程:500 kHz 1 V 量程:200 kHz 0.1 V 量程:100 kHz

## 准确度

准确度(%读数 +%量程)

具和	直流	交流		
<u>単</u> 在		10 Hz 至 1 kHz	10 kHz	
	10 A	0.1 + 0.2	0.1 + 0.1	5 + 1
分流器	1 A	0.1 + 0.5	0.1 + 0.2	5 + 1
	0.1 A	0.1+2	0.1 + 1	5 + 1
BNC	10 V	0.1 + 0.1	0.1 + 0.1	5 + 1
	1 V	0.1 + 0.2	0.1 + 0.1	5 + 1
	0.1 V	0.1 + 1	0.1 + 0.5	5 + 1

## *电机(NORMA 6003+、NORMA 6004+)*

电压量程 ±10 V dc, 10 %过载
电压通道 ······2
输入阻抗······ 1.1 MΩ (典型值)
温度系数
准确度 @ DC 0.1 %读数 + 0.1 %量程
脉冲通道数······3
脉冲逻辑高门限 ·················2 V (典型值)
脉冲逻辑低门限 0.8 V (典型值)
最大脉冲频率 100 kHz

### 频域测量

频率准确度	0.05 %量程 + 0.05 %读数(量程包括三个:
	1Hz ${\mathfrak T}$ 10Hz ${\color{black}{N}}$ 10Hz ${\color{black}{T}}$ 400Hz ${\color{black}{A}}$ 400Hz ${\color{black}{T}}$ 100kHz)
谐波	100 次,谐波测量带宽最高 6 kHz

# 附录

# 测量值计算方法

测量功能	计算公式	
RMS	$U_{rms} = \sqrt{\overline{u^2}}$	$I_{rms} = \sqrt{\overline{i^2}}$
有效值	$U_{\Sigma} = \frac{U_A + U_B + U_C}{3}$	$I_{\Sigma} = \frac{I_A + I_B + I_C}{3}$
DC component 直流成分	$U_{DC} = \overline{u}$	$I_{DC} = \overline{i}$
AC component 交流成分	$U_{AC} = \sqrt{U_{rms}^2 - U_{DC}^2}$	$I_{AC} = \sqrt{{I_{rms}}^2 - {I_{DC}}^2}$
Rectified Mean 整流平均值	$U_{rm} = \overline{ u }$	$I_{rm} = \overline{ i }$
Corrected Rectified Mean 校正整流平均值	$U_{rmc} = \frac{\pi}{2\sqrt{2}} U_{rm}$	$I_{rmc} = \frac{\pi}{2\sqrt{2}}I_{rm}$
Peak+ 正峰值	$U_{p+} = MAX(u)$	$I_{p+} = MAX(i)$
Peak- 负峰值	$U_{p-} = MIN(u)$	$I_{p-} = MIN(i)$
Peak to Peak 峰峰值	$U_{pp} = U_{p+} - U_{p-}$	$I_{pp} = I_{p+} - I_{p-}$
Crest Factor 波峰因数	$U_{cf} = \frac{MAX( U_{p+} ,  U_{p-} )}{U_{rms}}$	$I_{cf} = \frac{MAX( I_{p+} ,  I_{p-} )}{I_{rms}}$
Form Factor 波形系数	$U_{ff} = \frac{U_{rm}}{U_{rms}}$	$I_{ff} = \frac{I_{rm}}{I_{rms}}$
Fundamental Amplitude 基波幅度	$U_{H01} =  U(1) $	$I_{H01} =  I(1) $

测量功能	计算公式	
Fundamental Phase 基波相位	$\varphi U_{H01} = \arg[U(1)]$	$\varphi I_{H01} = \arg[I(1)]$
THD 总谐波失真	$U_{THD} = \frac{\sqrt{U_{rms}^{2} - U_{H01}^{2}}}{U_{H01}}$	$I_{THD} = \frac{\sqrt{{I_{rms}}^2 - {I_{H01}}^2}}{{I_{H01}}}$
Fundamental Content 基波含量	$U_{fc} = \frac{U_{H01}}{U_{rms}}$	$I_{fc} = \frac{I_{H01}}{I_{rms}}$
Harmonic Content 谐波含量	$U_{hc} = \frac{\sqrt{U_{rms}^2 - U_{H01}^2}}{U_{rms}}$	$I_{hc} = \frac{\sqrt{{I_{rms}}^2 - {I_{H01}}^2}}{{I_{rms}}}$
hvf hvf 谐波电压因数	$hvf = \frac{1}{U_N} \sqrt{\sum_{k=2}^{13} \frac{U_{Hk}^2}{k}}, (k \neq 3n, $ 对于三相电机)	
hcf hcf 谐波电流因数	$hcf = \frac{1}{I_N} \sqrt{\sum_{k=2}^{13} I_{Hk}^2}$	
Active Power 有功功率	$P = \overline{u \cdot i}$ $P_{\Sigma} = \overline{u_A \cdot i_A + u_B \cdot i_B + u_C \cdot i_C}$ $\Box \Box I_N = 0 \text{ for 3P3W3M}$	
Fundamental Active Power 基波有功功率	$P_{H01} = U_r(1)I_r(1) + U_j(1)I_j(1)$	
Reactive Power 无功功率	$Q = s\sqrt{S^2 - P^2}$ $s = +1 @ \square \square \square S = -1 @ \square \square \square$ $Q_{\Sigma} = \sqrt{S_{\Sigma}^2 - P_{\Sigma}^2}$	

#### NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+

用户手册

测量功能	计算公式	
Fundamental Reactive Power 基波无功功率	$Q_{H01} = U_j(1)I_r(1) - U_r(1)I_j(1)$	
Apparent Power 视在功率	$S = U_{rms} \cdot I_{rms}$ $S_{\Sigma} = U_A \cdot I_A + U_B \cdot I_B + U_C \cdot I_C$	
Fundamental Apparent Power 基波视在功率	$S_{H01} = \sqrt{P_{H01}^2 + Q_{H01}^2}$	
Power Factor 功率因数	$\lambda = \frac{P}{S}$ $\lambda_{\Sigma} = \frac{P_{\Sigma}}{S_{\Sigma}}$	
Fundamental Power Factor 基波功率因数	$\lambda_{H01} = \frac{P_{H01}}{S_{H01}}$	
Phase Shift 相移	$\varphi = \operatorname{atan2}(Q, P)$ $\varphi_{\Sigma} = \cos^{-1}(\lambda_{\Sigma})$	
Fundamental Phase Shift 基波相移	$\varphi_{H01} = atan2(Q_{H01}, P_{H01})$	
Power Fundamental Content 功率基波含量	$P_{fc} = \frac{P_{H01}}{P}$	
Efficiency 效率	$\eta = \frac{\sum P_{out}}{\sum P_{in}}$	
Impedance 阻抗	$Z = \frac{U_{rms}^{2}}{S}$	
Fundamental Impedance 基波阻抗	$Z_{H01} = \frac{U_{H01}^{2}}{S_{H01}}$	

测量功能	计算公式	
Impedance Series Equivalence 阻抗串联等效	$R_s = \frac{P}{I_{rms}^2}$	$X_s = \frac{Q}{I_{rms}^2}$
Fundamental Impedance Series Equivalence 基波阻抗串联等效	$R_{sH01} = \frac{P_{H01}}{I_{H01}^2}$	$X_{sH01} = \frac{Q_{H01}}{I_{H01}^{2}}$
Impedance Parallel Equivalence 阻抗并联等效	$R_p = \frac{U_{rms}^2}{P}$	$X_p = \frac{U_{rms}^2}{Q}$
Fundamental Impedance Parallel Equivalence 基波阻抗并联等效	$R_{pH01} = \frac{U_{H01}^{2}}{P_{H01}}$	$X_{pH01} = \frac{U_{H01}^{2}}{Q_{H01}}$
Electric Energy (Wh) 电能	$W = \frac{1}{3600} \int_0^{t_f} p dt$ $W_{\Sigma} = \frac{1}{3600} \int_0^{t_f} p_{\Sigma} dt$	
Electric Energy +/- 正/负向电能	$W_{update} = \frac{1}{3600} \int pdt$ , 对于每个更新周期 if $W_{update} > 0$ , $W_+ = W_+ + W_{update}$ if $W_{update} < 0$ , $W = W + W_{update}$	
Electric Quantity 电量	$q = \frac{1}{3600} \int_0^{t_f} i dt$	
Electric Quantity +/- 正/负向电量	$q_{update} = \frac{1}{3600} \int i dt$ $if \ q_{update} > 0,$ $if \ q_{update} < 0,$	,对于每个更新周期 $q_+ = q_+ + q_{update}$ $q = q + q_{update}$
Torque 扭矩	$T = \overline{t}$	orque

#### NORMA 6003/NORMA 6003+/ NORMA 6004/NORMA 6004+

用户手册

测量功能	计算公式
Rotation Speed 转速	$n = \overline{speed}$
Mechanical Power 机械功率	$P_M = \frac{2\pi}{60} \overline{torque \cdot speed}$
Mechanical Energy 机械能	$E_M = \frac{1}{3600} \int_0^{t_{sr}} P_M dt$

## 如何更准确的测量

### 通道内阻引起的测量误差

使用和负载匹配的接线方式可以降低功率损失对测量精度的影响。以下考虑电源(Source)和负载(Load)的情况。



分析仪图 1.

将电压测量回路连到近负载一侧(分析仪图 1)。电流测量回路测得流经负载的电流 i_L(期望电流)和流经电压测量回路的电流 i_V(误差电流)之和。因为测量回路电流为 i_L,所以误差为 i_V。本分析仪电压测量回路的输入阻抗约 2MΩ,当输入 1000V 电压时, i_V 约为 0.5mA (1000V/2MΩ)。只有当负载电流 i_L 大于等于 0.5A,对测量精度的影响才能够在 0.1%以内。



分析仪图 2.

将电压测量回路连到近电源一侧(分析仪图 2)。电压测量回路测得负载的电压 e_L (期望电压)和电流测量 回路的分压 e_i (误差电压)之和。本分析仪电流测量回路的输入阻抗 l Rin 约 0.025Ω,当输入 10A 电流 时, e_i约为 0.25V (10A×0.025Ω)。只有当负载电压 e_L 大于等于 250V,对测量精度的影响才能够 0.1% 以内。综上所述,测量低电压大电流时,建议采用上图的接法;测量高电压小电流时,建议采用下图的 接法。

#### 泄露电容的效应

功率分析仪的每个测量通道是相互隔离的。然而,这些隔离的通道相对于大地,仍然存在一个泄露电容 Cs,这个电容由仪器本体的分布电容,电源适配器的隔离电容,以及仪器内部的抗干扰电容组成。通常 功率分析仪的测试对象,相对于大地有一个较高的电压,我们将这个电压称为共模电压 Vcom。共模电压 可通过泄露电容 Cs,产生一个电流 ics。这个电流 ics会对功率分析仪的测量结果产生一定的影响。

分析仪图 3,在进行电压测量时,电流 ics 通过待测电源的内阻  $R_{s+}$ ,  $R_{s-}$ 以及功率分析仪的测试内阻  $R_{in}$ 耦合到测量回路中,对测量电压产生的影响为:  $\Delta U = i_{cs}[R_{s-}//(R_{s+} + R_{in})]$ ,由于  $R_{in}$ 较大,主要起到影 响作用的是接入到测量回路公共端(黑色端子)一侧的待测电压源内阻  $R_{s-}$ 。



 $\Delta U = Ics[Rs-//(Rs+ + Rin)]$ 

泄露电流对电压测量的影响

分析仪图 3.

在进行电流测量时,电流 ics 通过测试电阻 R_{shunt},测试电阻与测量回路公共端的内阻 R_s-,形成一个电压, 耦合到测量回路中, 对测量电流产生影响为:  $\Delta I = i_{cs}[(R_{shunt} + R_{s-})/R_{shunt}]$ , ics 在 R_{shunt}和内阻 R_s-上的分压均可引入测量误差。



ΔI= Ics[(Rshunt + Rs-)/Rshunt]

泄露电流对电流测量的影响

分析仪图 4.

降低泄露电容效应的方法:

- 1. 高频成分比低频成分更容易在泄露电容上产生电流。用内置电流通道测小电流时,若不关注电流 的高频成分,建议打开 650Hz 线路滤波器,可有效降低泄露电容的影响。
- 2. 将内置电流通道接于 N 端或地端,可有效降低泄露电容的影响。
- 3. 断开电源适配器, 仅用电池供电, 可降低泄露电容的影响。
- **4**. 测量电压时,若待测电压源的两端对地阻抗不一致,建议将黑色端子连接阻抗较低的一端(避免泄露电流流经待测电压源的内阻)。

#### 宽频带测量

分析仪的带宽可达 500kHz,而采样率为 200kHz。当测量带宽大于采样率的一半时,可能会发生混叠现象,以致观察到的波形并非真实波形,测量到的频率也并非真实频率。

如果想测量一个基于时间的数字量,例如有效值,交直流成分等,混叠后测量的结果仍然准确。但应注意,若信号频率接近或等于采样频率及其倍数,测量结果无效。

若待测信号存在高于 100kHz 的频率成分,但不希望以混叠的方式进行测量,可根据所需带宽,选择打 开相应通道的线路滤波器。